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During the past decade the perception of conical intersections has changed. It is now appreciated that what
was once viewed largely as a theoretical curiosity is an essential aspect of electronically nonadiabatic processes.
Concomitantly, our understanding of this singular consequence of the-Bppenheimer separation of nuclear

and electronic motion has grown enormously. In this work the theory of conical intersections is reviewed.

I. Introduction complete description, additional details are provided. Thus,
) ) ) ) ) i section Il provides an introduction to the electronic structure
While the adiabatic or BornOppeneimer single potential  opics to be developed in this review while section Il describes
energy surface approximation is valid for the preponderance of {nose topics in more detail. In these sections conical intersections
chemical processes, nonadiabatic transitions, which extendgre defined, and such essential concepts asgthl*l or
nuclear motion to more than one Ber@ppenheimer potential branching? plane, the geometric phase eff@8942the non-
energy surface, are at the heart of such essential processes aFossing rulé3the derivative coupling® and diabatic basés?
vision, light harvesting;? charge transfer reactiofisand a  gre reviewed. The effects of the spiarbit interaction on the
myriad of processes in the upper atmosphere. In the past decadgeometric phase effect and the noncrossing rule are discussed.
it has become apparent that conical intersections, including thosethe spin-orbit interaction is singled out for special consider-
of two states of the same symmetry, which were once little more ation since it produces qualitative changes in the locus of points
than a theoretical curiosity, are an essential aspect of electroni-conjcal intersection. While all conical intersections produce the
cally nonadiabatic phenomena, touching most if not all areas gepmetric phase effect, not all conical intersections are topo-
of nonadiabatic chemistry. From the energy storage initiated graphically equivalent. In section IV the time dependent
by the cis-trans isomerization of retinal protonated Schiff base Schralinger equation is used to consider the effect of the
in bacteriorhodopsif to the observation of quantized or step- opography of a conical intersection on nuclear dynamics. As a
like structure in the rate constant for photodissqciation of prelude to this treatment, section Il includes a perturb&itie
ketene;®*!to ultrafast decay of azuleréto the geometric phase  analysis of the energetics and derivative couplings near a conical
in H + H; scattering}®>* conical intersections must be jntersection. The preponderance of fully quantum mechanical

considered. treatments of nonadiabatic nuclear dynamics near conical
Consequently there has been considerable interest in non-ntersection 911121422 gre carried out in a diabatic ba%iso
adiabatic processes induced by conical interactfof&Conical avoid numerical problems associated with the singular derivative

interactions influence nonadiabatic processes in several ways.couplings in the adiabatic representati®tiowever, here the
The interstate couplings are large near, and singular at, a conicakdiabatic representation is used. It has been argued that in the
intersection. These large couplings can lead to ultrafast decayappropriate coordinates, the singularity in the derivative coupling
of electronically excited states; that is, they facilitate upper state at the conical intersection is quite tractable and can in fact be
to lower state (UtL) transition$:23-3! Conical intersections with  used to advantag®.Section V describes some open questions
the appropriate topography can also facilitate transitions from raised in this work, while section VI briefly considers directions
a lower state to an upper state (Lt#3)2 for example, in for future investigation.
endothermic charge-transfer reactiéha,point that has received The focus of this overview is the conical intersection itself.
inadequate attention. A wave packet passing through a conicalTherefore, there is no separate examples/applications section.
intersection, as opposed to a transition state, may be routed toRather, conical intersections determined as part as of larger
more than one produét:®® Finally, conical intersections give  studies are included in the individual sections as illustrations.
rise to the geometric phase effé€t3® which necessitates The illustrations are drawn from two studies ongoing in my
changes in the nuclear Schlinger equation in the adiabatic laboratory, the dissociation of photoexcited HNCO,
representation.

In this work recent advances in our understanding of this HNCO(S, = XA + hy —
conseguence of the BorfOppenheiméf separation of nuclear 1oy, 2
and electronic motion are reviewed. Whenever possible, the HNCO(§ = "A") —H + NCOXTI) (12)
basic ideas are illustrated with examples. However, since much — HN(alA) + CO (1b)
of the progress in the past decade has been a consequence of
formal and algorithmic advances, for those interested in a more which has been the object of many experimental and theoretical
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studies’®-56 and the highly nonadiabatic reaction of oxygen and a
water, E ,cone axis

i

O(P) + H,O — OH(X’IT) + OH(A’Z") 2)

where the reactants are in any of tH&1 1,2A" states while
the products are in either thé/8 or 33A" states.

In HNCO photodissociation a large barrier precludes directed
dissociation on §to produce H+ NCOJ5758 Access to this
channel is achieved via;SS, internal conversion facilitated
by a seam of conical intersection. The seam was determined as
a function of R(C—N), reflecting the fact that following
photoexcitatiorR(C—N) increases as a consequence of a stable
trans isomer on £° These conical intersections are considered
in this work. The O+ H,O — OH(X2IT) + OH(A2Z*) reaction
is key to understanding the ultraviolet plume originating from
the control engines of the space shuttle or the Soyez engines of
Russian service vehiclé%:62 A proposed mechanism reflects
insights gained from points on a portion of the seam conical
intersection. The HOHO conical intersection considered in
this review is essentially collinear. This seam of conical
intersection can be understood as the well-knvh>+—111
seam of conical intersection in water, coupled to afPQ(n a
3IT orientation relative to the HOH axis. This high-symmetry ;
arrangement of the nuclei, which is accessible to both the !
reactants and products with little or no barrier (beyond the !
endoergicity), provides a favorable path for reaction 2.

Il. Overview ,
b E ,cone axis

Within the Born—Oppenheimer separation of nuclear and |
electronic motion the BormOppenheimer potential energy I
surfaces E"4r), and the adiabatic electronic staté¥r;R)
are the eigenvalues and eigenfunctions of the electronic Hamil-
tonianHe'9Y(r;R). Herer = (ry, ry, ..., r\¢) are the coordinates
of theNe! electronsR = (Ry, Ry, ... , Ry are the space-fixed
frame coordinates of thBI"“® nuclei, and we have noted that
the E’® depend only onz, the 3" — 6 = N internal
coordinates, defined below.

A. Conical Intersections and theg—h Plane: Privileged
Directions. At 7y (or Ry), a point of conical intersection, two
Born—Oppenheimer potential energy surfaces, denbtatJ
=1+ 1, intersect forming a double cone. Téeamis the locus
of these points of conical intersection. The dimension of the
seam is discussed below. A seam of conical intersection is
pictured in Figure 1 from two perspectives. While neither part
is complete, taken together they correctly describe the seam.
Figure la depicts a single point on the seagmThe adiabatic
energies,Eﬁ'a, K =1, J, are plotted vs the two internal
coordinates, denotegl (the tuning coordina8) andh" (the
coupling coordinate), for which the energy has the shape of a
double cone. Here “tuning” refers to the fact that one can “tune
in” on a specific conical intersection by changing the displace- p
ment alonggM. Figure 1b depicts the connectivity of the points i
of conical intersection, the seam. In that figure E& K = I, !
J, are plotted against one conical (a couplimy’)(or tuning
(g")) coordinate (herg" is used) and one nonconical or seam Figure 1. (a) Tilted asymmetric conical intersecticg’?, lower cone,
(9 coordinate. In Figure 1b the seam is a (thick dashed) line ;.4 E%2 upper cone, plotted in the branching gr-h plane. (b)

and the topography of the lower (upper) potential energy surface conical intersection in (a) plotted against one coordinate ingthle
along the seam is that of a (an upside down) ridge. This plot, plane and one coordinate on the seam perpendicular gp-theplane.
while accurate, is in a sense misleading. It leaves the impressionE>? lower wedge, andES? upper wedge. The point of conical
that if the seam were a convex up parabola, the extreme pointintersection in (a) becomes the ridge line in (b).

would resemble a transition state, with tiiedirection playing

the role of the reaction coordinate. This is not the case. The topography of the lower surface more like that of series of

second conical direction evident in Figure la makes the extrema with two negative eigenvalues. This analogy to extrema
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Figure 2. Branching, org—h, plane.g” (top panel) anch” (bottom

panel) in terms of atom-centered displacements for HNCO R(€+

N) = 2.9%, where the remaining parameters are chosen to minimize
the energy of the point of intersection. Also shown in the top panel is
g" with R(C—N) = 2.65a,.

is only approximate sincE?'a is not differentiable atry. In
summary, the minimal description of the energetics of a seam
of conical intersection requires at least four dimensiég”

andhV, and one seam coordinate. In this case the ridge pictured

in Figure 1b becomes a “ridge” of mountain peaks.

gM andhV are nuclear displacements akin to the normal modes
characteristic of an equilibrium geometry. The plane formed
by these two coordinates, the brancihgr g—h?*! plane, is a
key concept in the theory of conical intersections. Its determi-
nation is an essential first step in characterizing a conical
intersection. As discussed in section I is the gradient of
the energy difference while" is, to a good approximation, the
product of the energy difference and the derivative coupling
vector; see below. Figure 2 depicts the two displacements
defining theg—h plane in terms of atom-centered displacements
for a point on the §*A')—S(X*A") seam of conical intersection
in HNCO.

B. Noncrossing Rule.The dimensionality of the seam of
conical intersection is described by the noncrossing rule,
deduced by Wigner and von Neum&fsome 70 years ago.
While generally applicable, this rule is most relevant to conical
intersections where symmetry does not play a role, that is,
conical intersections of two states of the same symmetry, or
just same-symmetry intersections. According to tigacrossing
rule the seam of conical intersectioffior He'0 the usual
Coulombic Hamiltonian)may hae dimension Nt — 2, for
same-symmetry intersections whet® il the number of internal
degrees of freedoriquivalentlytwo internal coordinates must
be varied to find an intersection

This result is perhaps counterintuitive. Consider a model two
electronic state problem:

0
Ex¥7)

EY4(r)

H eI,O(t) — (O
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We seek ther = r,, for which E)4r,) — EX%z,) = 0. Since
this is one equation, its solution may be achieved by varying
one internal coordinate, for any choice of the remainifiy—

1 internal coordinates. Of course, solutions may not exist for
real values of the coordinates, so we would say the seam
have dimensionN" — 1 or that the solution space has
codimension 1. However, even with this caveat the result is
NOT correct. The problem with this argument is that it assumes
that theE,o’a are independent functions ef They are not, in
general, since they are the eigenvalues of a single matrix. When
E3%r) and E3%z) come from distinct symmetry blocks, they
are independent functions ofandN — 1 is, in fact, the correct
answer. However, in that cadé is the number of internal
degrees of freedom, consistent with the symmetry in question.

Thus, the noncrossing rule describes what can be, rather than
what is. It is not an existence theorem. Its implication, that two
internal coordinates must be varied to find an intersection, if it
exists, is not a practical means of locating points on the seam.
Perhaps for this reason, as recently as the 1970s, the importance
and even the existence of conical intersection of two states of
the same symmetry were questio§ééf’In section Ill we revisit
the original work of von Neumann and Wigner while discussing
a practical approach for locating conical intersecti&hs.

C. Derivative Couplings and the Adiabatic and Diabatic
Representations Since the locus of points of conical intersec-
tion is a space of dimensioN™ — 2 one might question the
importance of this topographical feature since it occupies a
negligible volume in nuclear coordinate space. In fact, conical
intersections would be of limited importance if it were not for
the derivative couplings, projected gradients of the electronic
wave functions

fw@ = Eﬁ’ﬁ"a(r;R)‘ai\,\,i‘P.O'a(r;Fe)Dr

These interactions provide the coupling between the adiabatic
electronic states. It is the finite range of these coupling that
extends the “effective size” of the conical intersections to a
nonnegligible volume and thus are responsible for nonadiabatic
events.

In the definition abové\ is a nuclear coordinate. While the
gradient of theEﬁ*a with respect to noninternal coordinates
vanishes, as a result of tieedependence dP°2 the derivative
couplings are nonzero foW, an internal or noninternal
coordinate. Derivative couplings with respect to internal coor-
dinates are of principal concern in this review. However, the
derivative couplings with respect to noninternal coordinates have
observable consequences giving risé-toubling in diatomic
molecule€® Other consequences of this class of derivative
couplings are described in section Il

While of fundamental importance the derivative couplings
are frequently cited as difficult to evaluat&being singular, in
the adiabatic representation, at a point of conical intersection.
This has limited the use of the adiabatic representation for the
description of nonadiabatic dynamics and led to the development
of the diabatic electronic state®46.70.71 For a historical
perspective on diabatic states including reference to the early
work of Lichten?2 O’'Malley,”® and Smith’° see ref 71. Diabatic
states, constructed from the adiabatic states to preserve the
concept of an electronic energy, are designed to reduce or
eliminate the derivative couplin:’

Because of the computational problems caused by the
singularity in the derivative coupling, its removal is a key issue
in studying nuclear dynamics near conical intersectiéns.
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Surprisingly, perhaps, the singularity is comparatively easy to
remove. In section Il we describe the nature of the singularity
in the derivative coupling and how it can be eliminated by a
transformation to approximate or quasi-diabatic states. Two
approaches are described, quasi-diabatic states based on
perturbative determination of the derivative coupfihand on
smoothness of a molecular propefy’® Using (o, ¢), polar
coordinates in thg—h plane, we show (section IIIA) that the
singular part of the derivative coupling is given by

1 0
296"

wherel(¢) is expressed in terms gfandh, the lengths of the
vectors defining theg—h plane. It has the above indicated
particularly simple form whemy/h = 1 (identified below as a
Jahn-Teller,%80 vertical symmetric or peaked, cone). We
further demonstrate (see, for example, Figure 7 in section Il1)
that this approximation is of sufficient quality to olate the
need to determine this largest component of the déitie
coupling using ab initio wae functions It is then shown that
the rotation of the pair of adiabatic states-bj(¢)/2 produces

a pair of approximate diabatic states with a nonsingular
derivative coupling.

1
(¢) &

2p

Jl
(W)t

Although diabatic bases are used for the preponderance of

the fully quantum mechanical treatments of nonadiabatic

dynamics involving conical intersections, recent work suggests

that the adiabatic representation, which offers conceptual
advantage$may not be as intractable as previously suggested.
The point is discussed in section V.

D. Complex-Valued Hamiltonians and the Spinr-Orbit

Effect. The preponderance of this presentation considers the

nonrelativistic (Coulomb) Hamiltonian, which is real-valued.

The noncrossing rule stated above applies to this real-valued

(symmetric) Hamiltonian. However, when the number of
electrons is odd, relativistic effects, in particular the inclusion
of the spin-orbit interactior?-82 lead to a complex-valued,
hermitian, Hamiltonian.

For a complex-valued Hamiltonian the conclusion of the
noncrossing rule is that the dimensionality of the seamls
— 3. TheN" — 3 result is, in turn, rigorous for the Hamiltonian
considered, that is, a Hamiltonian with a single degeneracy.
However, for an odd number of electrons there is an additional
complicating factor, Kramers’ degenerd@Kramers’ degen-
eracy, a consequence of time reversal symn¥éuiggjuires states
of systems with odd numbers of electrons to be (at least) 2-fold

degenerate. This changes the nature of the Hamiltonian that mus

be considered when looking for intersecting surféas/hen
Cs symmetry can be imposed, the result remaifis— 3. Here,
NG is the number of degrees of freedom that presetve

symmetry. However, in the absence of symmetry, the seam, if

it exists, has dimensioNnt — 5385
This change in dimensionality thN® — 3 or N"-— 5 has

profound implications for the geometric phase effect discussed

below. These implications are illustrated using a molecule in a
doublet state constrained ©s symmetry. We consider the
intersection of two adiabatic eigenstates of the nonrelativistic
Hamiltonian, perturbed by the sptorbit interaction. As
described in section Ill, the Hamiltonian matrix has the form

E?
_|,V

iy
EJ@

where y is real. This Hamiltonian has a seam of conical

Yarkony
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Figure 3. 2A; — 2B, conical intersection seam without spiorbit

interaction,s (red) and with spir-orbit interaction, s(purple point).
Also shown is a closed loop (green) surroundégubtending a solid
angleQ with respect to the single conical intersection posat,

intersection of dimension™ — 3 comprising the subspace of
the nonrelatiistic seam for which the spirorbit coupling
vanishesFor a triatomic molecule the intersection seam reduces
to a point, as is illustrated in Figure 3.

E. Geometric Phase Effect(i) Diabolical Conical Intersec-
tions. Longuet-Higgins®” noted that when a real-valued adia-
batic wave function is transported aroundcl@sedloop in
nuclear coordinate space containing a conical intersection the
wave function must change sign. This is the geometric phase
effect. The geometric phase effect, perhaps the signature
property of a conical intersection, necessitates modification of
the nuclear Schidinger equation built from adiabatic electronic
states’’42 See section IV. It is notable for its long range,
affecting nuclear dynamics under conditions when the wave
function never encounters the associated conical intersééfién.
When the conical intersections in question arise from two states
of the same symmetry, they are difficult to anticipate and may
go unnoticed. For that reason we have, following Béftgrmed
such conical intersectionsdjabolical.41-88

(i) Proving the Existence of a Conical Intersectid@onical
intersections determined from numerical procedures are never
exactly degenerate. The verification of the geometric phase
effect, however, provides incontrovertible evidence of the
existence of a conical intersection. This approach has been used
in the past to establish the existence of conical intersectfoffs.

Qn alternative, much less tedious, method for confirming the

xistence of a point of conical intersection, evaluates the
circulation, the line integr8 around a closed loop, of the
derivative coupling” It has been showh that if the loop
contains a conical intersection, then as the radius approaches
zero

¢t (x)-dr —

On the other hand, if the closed loop does not enclose a conical
intersection, thep — 0 limit of the circulation is 02 In the
language of the geometric phase efféat,an infinitesimal loop
the circulation of the deriative coupling equals the accumulated
phase. Numerous applications of this approach have been
reportech1.93-96

To use the above results, loops in nuclear coordinate space
containing a conical intersection are required. Such loops are
readily defined using thg” andh" vectors. Figure 4 displays
the nuclear configurations that constitute a loop around the
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parameters

classificatiéh

classificatior?

Agp=85=9=0
Agr=0,8'=¢=0
Agpn=0, s‘and/ord =0

tilted symmetric

Figure 4. For O€P) + H,O: Center figure giveg—h or branching
space for a point on theéé&"'—33A"" seam of conical intersection. Outer
figures describe a loop around that point of conical intersector.

0, r correspond totx, —x axis displacements, whil¢ = /2, —7/2
correspond toty, —y axis displacements.

(nearly) collinear conical intersections in-®IOH noted in the
Introduction. It is also worth noting that the potential for
bifurcating nuclear dynamics exists. Motion along the positive
gV direction points toward D + O, which motion along the
+hV axis points toward OH- OH.

(iii) Spin—0Orbit Interaction and the Geometric Phase Effect.
The affect of the spirrorbit interaction on the geometric phase
effect in odd electron systems is particularly interesting. Since
the dimension of the seam is now no bigger tiNit — 3, the
idea of a loop enclosing or not enclosing a conical intersection
must be revise@ As illustrated in Figure 3, one should consider
the solid angleQ2, subtended by the loop viewed from the point
of conical intersection. Berry has shoffrhat the change in
phase of the wave function is expi(2/2), which becomes-1
(Q = 27) when the loop contains the point of intersection. Here
the — (+) sign applies to the lower (upper) state. An example
of these ideas, suggested by the work of Stéeee also ref
98), will be provided in sections IIIE and IlIF. It is also shown
that in the case of a complex hermitian Hamiltonian the
circulation of the derivative coupling does not equal the
accumulated phase.

F. Conical Topographies and Elementary Conesln the

vertical symmetric
vertical asymmetric

peaked

~semilevel §7dy, = '/dy,~ 1)
~sloped §7dy, = /dy, < 1)

coordinateg¥ andhV. In this g—h plane the conical topography
can be described, in terms of four conical parametgrs, s,
ands, deduced from the characteristic vectgt$ h¥, ands
(the gradient of E>? + E39/2 see below). In particular, it is
showrf! that E?is given by

E*Xp.9) ~ pl(s, cose + 5, sing)l —
(6° cog ¢ + h? sir? ¢) 0]

wherea,, (W = X, y, 2) are the Pauli spin matricé$] is a 2 x
2 unit matrix andp = 0 is a point of conical intersection. In
section Il we demonstrate (see, for example, Figure 7 in that
section) thathis approximation is of sufficient quality to albte
the need to determine the electronic energy using an ab initio
wave function in the immediatécinity of a conical intersection

It will prove useful re-express the conical parameters as, a
strength parametedg? = g? + h?, an asymmetry parameter,
Agh = (g2 — h?)/(g? + h?), and two tilt parameters/dgn =
sdg and9/dgn = s,/h. This parametrization (see eqs 16 and 17
in section IlIC) and an analysis of the nuclear Schinger
equation near a conical intersection, described in section 1V,
suggest that it is useful to classify the double cones as in Chart
1. Here the attribute “symmetric” refers only gy, the middle
column gives the labeling used herein, and the third column
indicates approximate correspondences with an earlier labeling
due to Ruedenberg and co-workétsThese basic cones are
pictured in Figure 5. Here the vertical symmetric double cone
is that corresponding to a symmetry-required E-tyQg
irreducible representatioff.Only this double cone, for which
g=hands,=s, = 0, is fully symmetric; that is, the energies
are independent af, the angle that takes you around the cone.
Note too the striking difference in thg dependence induced
by Agh = 0, middle panels, and bg = 0 and= s,, bottom
panels. The implications of this difference are discussed in
section IV using wave packet dynamics.

[ll. Conical Intersections: In More Detall

The adiabatic electronic potential energy surfat&"f(r),
are the eigenvalues &f¢'0, the nonrelativistic coulomb Hamil-
tonian:

[H(rR) — EM @I WP ArR) =0 ©)

We will also have occasion to considéf' = He'9+ Hso where
Hse is the spin-orbit operator treated at the Breit-Pauli
level 81.82.99However, even in this case, for molecules comprised
of low Z (=~36) atoms, it is, as discussed below, useful to
consider adiabatic states described by eq 3.

adiabatic representation nonadiabatic transitions are driven by When onlyH®'%is consideredr, points of conical intersec-

the derivative coupling. At the conical intersection the derivative
coupling is singular. To quantify the propensity for a nonadia-
batic transition near a conical intersection, requires, at minimum,
the energy and singular part of the derivative couplings. Using

tion of statesl andJ = | + 1, are a subset of the internal
coordinatesr, for which AEXAr) = EP4r) — E3%r) = 0.
WhenHs°is included, degenerate statesHsf in the adiabatic
basisW"? are sought.

perturbation theory, one can show that the conical topography A. g—h or Branching Plane. The vectorsg” and hV,

is completely described by nuclear displacements in the branch-

ing®? or g—h*' plane defined by the tuning and coupling

rigorously defined below, form the basis of a generalized polar
coordinate system, the intersection adagfedr conicalt
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Figure 5. Sections of the potential energy surface for (a) a vertical symmetrical cone (top mipe)0.11 andAg, = s, = s, = 0; (b) vertical
asymmetric coneggn, = 0.11,Agn = 0.99, ands, = s, = 0 (middle panel); and (c) tilted symmetric cone (bottom padgl= 0.11,Agh = 0, s, =
0.2 ands, = 0. Dashed (solid) lines are upper (lower) cone.

cooordinates where = g”/g, y = h"/h, [|g"|| = g, ||h"|| = h. coordinates, and denotef i = 1, ...,N™ — 2 are orthogonal
The remaining\™ — 2 internal coordinates, referred to as seam to the &, y) plane and to each other. A seam coordirztéor
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Figure 6. For HNCO: seam coordina# for the conical intersection
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sY, andfV (see below) to be evaluated with a single algoritim.
Construction ofVHe"2and the evaluation of the right-hand sides
of eqs 5a-5c are described in refs 44 and 68.

(i) Symmetry and the Orthogonality gf andhM. Symmetry
is an important aspect of ttge-h plane. Figure 2 depicted the
two coordinates defining thg—h plane in terms of atom-
centered displacements. There the role of symmetry is evident.
The molecule is (approximately) in theé-Y plane in nuclear
coordinate space. The states in question, h&nd S states of
HNCO, have!A’ and!A"” symmetry. The mode labeldt?, the
coupling mode, is seen to have the symmetry required to
couple an A and an A state. The tuning modey"” has &
symmetry. It is important to note that this symmetry does not

point in Figure 2 and displacement along the seam coordinate to an yrige g priori from the calculatiom,, determined by a numerical

adjacent point of conical intersection.

the g—h plane in Figure 2 is given in Figure 6 which also
illustrates the result of a displacement alongf. This displace-
ment, orthogonal to thg—h plane, approximately connects two
points on the seam of conical intersecti®{C—N) = 2.65
andR(C—N) = 2.95. The displaced point is only on the seam
in an approximate sense since orientation of ¢gheh plane

procedure that does not enforce symmetry, is planar to an
excellent approximation. However, since the electronic states
are (nearly) degenerate, the symmetrggdandh" in Figure 2
are mixed by the small deviation from planarity. The observed
symmetry is restored by the following simple orthogonalization
procedure%s

In general,g” andh" constructed from eqs 5a& need not

changes with the position on the seam: that is, the seam is not?€ orthogonal. This results from the degener&y(r) =

a (generalized) straight line.

For motion in theg—h plane it is useful to define the polar
coordinatesp a size coordinate, angla shape coordinate by
= p cos¢, y = p sin ¢. For fixed p, the path mapped out by

E‘J)'a(rx) as a result of which the orthonormal eigenfunctions,
c'(ry) and c(ry), are determined only up to a rotation by an
anglef. These “nascenty” andhM may not reflect the point

group symmetry at, and may not appear to be continuous along

increasingp by 2 represents a circle surrounding the point of the seam. These limitations can be avoided by exploiting the
conical intersection. For this reason these polar coordinates arevery the flexibility that created the proble¥f Rotating the
useful in the description of geometric phase effect. An example €'(z) andc’(zy) by anglep

of motion for p fixed and 0< ¢ < 27 is shown in Figure 4.
See also ref 101.
(i) Evaluation of g' and H'. In the past, theg—h plane was

determined by fitting the energies along loops around the conical

—sin ﬂ)(?J ): 0(2)(/3)[2] (6a)

cosp

[6)= (et

intersection. However, with the use of analytic gradient tech- transformsg” andh" to y" andn" where

niqued* determination of theg—h plane is no harder than
determination of the gradient of the adiabatic enéfgy?3
VEg'a(r). Below is outlined the basic idea behind this impor-
tant advancé’

ExpandWp? in a configuration state functié®t (CSF, )
basis:

NCSF

Zcii(r) ¥o(riR)

o=

WAriR) = (4a)

where thecK are solutions of the configuration interaction
problem:
[H*%) — B¢t ‘(D) = 0 (4b)

andHe"(z) is the electronic Hamiltonian in the basis. Then
(g9, h¥) are given by

29"(r) = ¢'(z)[VH*(D)]c'(z) — ¢” (r)[VH D) ()
(5a)
h () = ¢ (z)[VH* YD) () (5b)
It is also convenient to define

28°(r) = () [VHYD)]c'(z,) + ¢ (1) V,H @) c(x,)
(5¢)

In egs 5a-c, VHe'0, the gradient of the Hamiltonian matrix, is
the same gradient used to evalu&‘lﬁg'a. This enableg, hV,

PW=("cosP+hsin2B) and
7" = (h" cos B — g” sin 28) (6b)

Then requiring thay"-p" = 0 gives fors

_ 2(h-g"]
an %o [Ih12 = 118”113

Since tan¢ + m) = tana for m= 0, +1, +2, ..., and noting
that 25 is required to evaluatg” and#", the solutions of eq
6c, can be taken g&= o + ma/4 form= +£1, 2. Theg" and

h" reported in Figures 2 and 4, were orthogonalized using eq
6¢c. The orthogonality constrainegg? andh", which, as noted
above, have the appropriate point group symmetry, greatly
simplify the description of the seam of conical intersection.

Interestingly, from eq 6@ andh" are interchanged via the
transformatiorO®(£/4). This may seem counterintuitive since
gV is an energy difference gradient whit€ is a coupling term.

In fact, this interchange is only possible at the conical intersec-
tion where it is simply a consequence of the degeneracy.

B. Noncrossing Rule.Conical intersections are not isolated
points but are continuously connected, forming seams. The
noncrossing rule, the classic 1929 theorem of Eugene P. Wigner
and John von Neumarfd,describes the dimensionality of the
seam or, equivalently, the number of internal coordinates that
must be simultaneously varied to locateya

(i) Noncrossing Rule: A Dimensionality TheoreAtcording
to the noncrossing rulor a symmetric (hermitian) matrix, it
is necessary to change two (three) parameters to aetéepair

(6c)
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TABLE 1: Noncrossing Rule? leavesH unchanged since that portion Bfis a constant times
pu(N) d(N,m) ru(N,m) pr(N,m) Apu(1,2) them x m unit matrix. Thus,rU(N,_m> 1) = ru(N—m,m=1) +
1 Herrmitian m? = (N — m) + m2 [m(m— 1)/2]. Finally, since here the unique
N2 Nem+1 m+N—-m N—nm+1 3 elements ok are independenE containsd(N,m) = N — m+1
H Svmmetric [N —m + _ 1] ark_)itrary_ parar_neters_. Thus, the number of
(NN-N N-m+1 {m _ym (N} — {m} +1 > parameters i of dimensionN with a singlem-folddegeneracy
is pu(N,m) = pu(N,m + d(N,m — r(N,m), which is given in
K} = KK + 1)/2, Apa(myn) = pu(N.m) — pr(N.n). Table 1. The number of free parametergHirat an intersection

. . L is, Apu(1,2) = pu(N,1) — pu(N,2). See Table 1.

of degenerate eigemlues. Interestingly, the validity of the For the complex cashl = N andm = 1, py(N,1) = N2 + 1
noncrossing rule has been questioned on several occa-_ 1 — Nz, This result could have been obtained more directly
sions?*:°71%For this reason the simple yet elegant argument py noting thatH has N(N — 1)/2 (off-diagonal real parameters)
of Wigner and von Neumann is reproduced here on the basis_ " (diagonal real parameters) N2 (real parameters). Fot
of the translation of their work in ref 107. real—valuede(N 1) — N(N + 1)/2 — 14+ 1= N(N + 1)/2

In section Il it was noted that the eigenvalug¥{(z) of an again as expected. Fot = N, andm = m in the hermitian
hermitian matrix were not independent functions fThe [symmetric] casen(N,m) = N2 — m? + L[N(N + 1)/2+ 1 —
essential idea in proof of Wigner and von Neumann is to use a jym + 1)/2] parameters. Thus, omefold degeneracy renders
representation for which the eigenvalues are in fact independentap,(1,m) = n? — 1 [m(m + 1)/2 — 1] of the N2 [N(N — 1)/2]

variables. Using this representation the number of independentp‘-irarmterS arbitrary. The case= 2 is of particular interest

parameters il is determined, in the absence of any degeneracy, gng yields 3 [2] as promised.

and with a single degeneracyhe difference represents the  (jjj An lllustration: 2 x 2 Caseln the 2x 2 case introduced

number of parameters that may be changed to determine ajn section Il the degenerate hermitian [symmetric] matrix has

degeneracy pH(2,2)= 22 — 22 +1 =1 [3 — 3 + 1 = 1] free parameter
The required representation is the “spectral representation” corresponding to the result

in which anN x N hermitian matrix is represented in terms of

a unitary matrixU(z), UTU = I, and a diagonal matrif with = [E 0]

diagonal element&pp = Ep by |0 E
— It is illuminating to consider this case in further detail. Noting
H =X U *E (T)U 7
o) = ZpUpa()* Epl0)Upy @) ) that E can be written
The key point is that someg when used in eq 7 are redundant. s 0 — 0
To proceed, it is necessary to consider two cadas,hermitian, E= (0 s) + (0 E) (92)

complex-valued, wittHqs* = Hgo, andH is symmetric, real-

valued, withHqs = Hg,. For the sake of brevity the results for ~and restricting to the symmetric case whéfes orthogonal

H symmetric are placed in bold square brackétsmmediately from eq 7

following the results foH hermitian. . .
When H is complex-valued[real-valued U is unitary H= (3 0) + (C_03¢ _3'”‘/’)(_6 0)(C05_¢ sm¢)

[orthogonal] and consists of\2 [N?] real numbers, of which, 0 s sing cosg J\O €/\—sing cos¢

sinceUTU =1, N2 [N(N — 1)/2] are unique, that i§) hasN?2 (9b)

[N(N — 1)/2] independent parameteg,(N) = N2 [N(N — 1)/ _[s—ecos2 —esin2p
2]. See Table 1. =\ e sin2 S+ cos 2 (9c)
SinceU appears quadratically in eq 7, not@dllead to distinct
H. Consider, for the hermitian, and only the hermitian, case Thus, as expected is defined by three parametesse, and
the nontrivial unitary matrixJ® given by ¢, and is degenerate provided= 0, with E = s. Away from a
degeneracy all three parameters are required to define
1 0 However at the degeneracy, sinoe= 2, ry(2,2)= 2(2 + 1)/2
1 — 2 =1, one parameter of the orthogonal transformatipn,
U(k)(¢) _ o? (8a) becomes undefined, amtf2,2) = 1 (the choice oF). Further,

when the seam is mapped out, sipgé2,2)= 1, oneparameter
may be fixed §) and, sinceApn(1,2) = 2, two parameters
0 1 (¢, ¢) varied to achieve a degeneracy. Here, choice of parameters
is not arbitrary, onlys can be fixed ang ande must be varied.
The search for degeneracies is not performed directly irsthe
€, and¢ space but rather in thespace. This is permitted since
s = 9(1), ¢ = ¢(r), ande = ¢(r). However, in this case, a
particular value ofs cannot be specified; that is,cannot be
held fixed. If 7« is the component of to be held fixed the
requiremenis/ork = 0 must hold.

(iii) Noncrossing Rule for Molecules with an Odd Number
of Electrons.As pointed out in section IID for odd electron

for, k=1, ...,N. InsertingU® into eq 7 leaves$d unchanged.
Thus, in the unitary [orthogonal] case fernondegenerate or
equivalently with arm-fold degeneracy fom = 1, there aréN
[0] redundant transformationsy(N,m=1) = N [0]. See Table
1.

Fora single mfold degeneracy i, with m > 1 the unitary
[orthogonal] matrix withn? [m(m — 1)/2] parameters

1 0 molecules in the absence of spatial symmetry, the seam of
_ 1 conical intersections has dimensinifit — 5 and has dimension
uie = Uy Up (8b) NG — 3 whenCs symmetry exists. It will prove illuminating
Uy Uy, below to point to the origin of the discrepancy with the results

0 1 of the previous section. The key here is time reversal symmetry



Feature Article

J. Phys. Chem. A, Vol. 105, No. 26, 2008285

as a consequence of which all eigenstates come in degenerat@ ABLE 2. For HNCO, Convergence to 7, on Planar Trans
pairs. To accommodate this requirement, a basis in which the Seam withR(C—N) = 2.65, from 7, with R(C—N) = 2.85%

functions come in pairsy, and Ty, whereT is the time
reversal operatd¥ is used. A point of conical intersection is
therefore a point of degeneracy 4. Naively applying the result
of section IlIBii gives 4 — 1 = 15, rather than the expected 5!
The discrepancy arises from the fact that not all the matrix
elements oH are independent, so that not all unitary transfor-
mations can be used to build. In particular, using standard
properties of the time reversal operatbmye find that

[p|HE= To|HTEE (20)

While the general case is not readily treated in this approach,

the Cs result is straightforward. Rewrite eq 7 in block form

(L P O v

wheree is a real-valued diagon&l x N matrix and, iflg;|e;C=
Uy, thenT¢;|Te;0= Uj'". When a plane of symmetry exists,
all (Tya,yp) vanish by symmetry, giving)'™ = 0 andU'* =
UTT, Thus,U is determined by)" so that the analysis of section
IIBii can be used and\py(1,2) = 3. For a treatment of the no
symmetry case see ref 108.

C. Algorithm for Locating Conical Intersections. The

U
UT'T'

U
UT'T'

R(CN) R(CO) [ONCO Ex(cm?) AE(cm™?) nornt
2.8500 2.3321 103.00 5907.4 0.1102(12)
2.6573 2.3645 98.80 8222.9 151.91 0.4213)
2.6501 2.3609 98.10 8833.9 5.9057 0.7598)
2.6501 2.3568 98.20 8811.3 44.898 0.8322)Y
2.6500 2.3594 98.20 8855.3 8.0157 0.5798(
2.6500 2.3588 98.00 8835.6 1.9092 0.2433)
2.6500 2.3579 98.20 8836.6 0.63871  0.8132(

aNorm is norm of right-hand side of eq 15. Characteristic base 10
in parentheses.

respect tor and the Lagrange multiplie& and 4, giving

Qr&s) d'r) h@ k@) ||or
() 0 0 0 ||0&]|
h ()" 0 0 0 |[|o&]
k(r)" o' o' 0 |[oa
g(r) + £,07°(x) + EhY(r) + A'k(®) | (15a)
_ AEU(T) (15b)
0 (15c)
C(r) (15d)

whereQV(r,£,4) = V,V,LY andk(r) = V,C(r). Note that eqs

noncrossing rule describes the dimensionality of the intersection15b and 15c are eq 13 and eq 15d imposes the constraints while
space and prescribes limits on how to search for a point of the first equation minimizes the constrained energy. Table 2
intersection. It does not, however, provide a means for locating illustrates the convergence properties of this algorithm for a
points in that space. Several approaches for locating individual in HNCO. The adiabatic states are described using an expansion

points of conical intersection currently ex®ti%° Below is
described the algorithm we have developed.

Assumer is near but not aty, that ist + ot = 7«. Expand
Hel9(z) in a Taylor series about

H®Yr + 07) ~ H*Y7) + VH Y1) 0 (1la)
Taking matrix elements witrc{(z),c%(r)) gives the 2x 2 matrix

H®Yz + o1) = (E}}4r) + $°()-07)| + (AE,(z) +
g”(r)-01)0, + h(1)-670, (11b)

whereAE;; = B2 — Ey?andl is a 2 x 2 unit matrix.He(r)
will have degenerate roots provided

HY%+or)=0 and  HfYe+or) — H3Ae+o7) Rt

which using eq 11 becomes

hr)-0r=0 and  AE,(r) = —g"(r):0r (13)

Equation 13 is the basis for an efficient algorithm for locating

7. However, these equations determine only two components

of or, as required by the noncrossing rule. Thus, is
underdetermined. The remainidg can be determined using
either or both (i) geometric constrair@yzr) = 0 and (ii) energy
minimization. We implement these additional constraints using
Lagrange multipliers. The functional

L(r£4) = Ej(r) + E,AE (1) + EH]) +47-C  (14)

comprising~3.5 x 10° CSFs. The convergence is seen to be
quite rapid.

D. Energies, Derivative Couplings, and Diabatic Bases.
(i) Energies and Demative Couplings Using Intersection
Adapted Coordinatedn the adiabatic representation nonadia-
batic transitions are driven by the derivative coupling,

o =R lerR] s
At a conical intersection the derivative coupling is singular. To
qguantify the propensity for a nonadiabatic transition, requires,
at minimum, the singular component(s) of the derivative
coupling and the energies. The importance of the parameters
ss, g¥, andhV introduced previously is that they determine both
the singular component of the derivative coupling and the linear
or conical portion of the energy &. This can be shown using
a degenerate perturbation theory originally used by Mead to
describe % systems8 In particular?” for r near ary, and in the
g—h pIane,EE'a'(l)(r), the linear part of the electronic energy,

Eﬁ'a(r), K =1, J, can be expressed in terms@fh or dg,, Agn
ands, = s¥-x, 5, = -y, by
E*® 0 )
0 ESa®)
p(s,cose + 5, sing)l — pau(¢)o, (172)
where

q(#)> = g” coS ¢ + I sif ¢ = dy, (1 + Ay, cos 2)/2 =
dgn’0s(4)* (17D)

is expanded to second order and an extremum is sought withFurther, the singularity in the derivative coupling is restricted
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Figure 7. For HNCO: Electronic matrix elements along a circle
centered at the conical intersection in Figure 2 witk 0.1a,. E33
andf,, the component of the derivative coupling that is singular at the
conical intersection from ab initio wave functions (open symbols with
lines) and perturbation theory (filled symbol$).(open triangles with
lines) derivative coupling with respect to a rotation about Zhexis
passing through the center of mass and the equivaleft’s).

to the¢ component and is given by

(Lp) £ ~ (Up) £, = gh(2pq(¢)") =

(g/h + hg)a,(¢)° = 1/(2p) A(¢) (16b)

where

g cos¢ = qg(¢) cosA(e) and

hsing = q(¢) sinA(¢)
(16c)

Note that both the derivative coupling and the energy difference
are expressed in terms gfandh. This reflects the fact that
these quantities are not independent but are related to each oth
using, for example, perturbation theory. Figure 7 illustrates the
use of eqs 17a and 16b reporting, for the conical intersection
given in Figure 2, thé)® andf ), obtained from the ab initio

wave functions and compares them with the perturbative results

gPa® andf}" @ In this figurep = 0.1ap and¢ = 0, ..., 2r.
The agreement between the ab initio quantltles and their
perturbative approximations, which require virtually no time to
evaluate, is seen to be excellent. Thus, close to a conical
intersection, the perturbative results can be used in lieu of costly
ab initio calculations.

(ii) Confirming the Existence of a Conical Intersectidnis
interesting to observe that the circulation, the line intégral
around a closed loop, satisfies

$15(¢) dp ~ 7 (18a)
This is to be expected since from eqs 16b and 16p as 0
#19¢) dp = 172D gy = 7 (18b)

Had the loop not contained a singularity (conical intersection)

Yarkony

this circulation would have to approach zerogas> 0. These
observations are significant since conical intersections deter-
mined from numerical procedures are never exactly degenerate.
The verification of eq 18b provides a computationally expedient
method for proving the existence of a conical intersection.

There is one caveat the quadrature in eq 18a is sensitive to
the sign off When|f | is small, in Figure 7 neap = 0, .
However, thls sign can be determined, without determining a
large number of points, using the fact that the derivative
couplings with respect to noninternal coordinates are slowly
varying near a conical intersectié#’. The evaluation of these
derivative couplings, which also provides a stringent check
of the algorithm for evaluating thé , is briefly described
below.

(iii) Derivative Couplings with Respect to Noninternal
CoordinatesThe f " are nonvanishing fok = z, an internal
coordinate, as well as for = O"¢ an overall rotation or
translation of the nuclei. However, unlike?, f{,.. can be
expressed as the matrix element of an electronic operator This
can be readlly demonstrated as follows. DefDe= Z, 1o
ando =T |p oro = |p k = nuc, el. Then, since space is
homogeneous,l—[e' o ] = 0 whereO = 0¢! + O and since
EX® depends only om

O,(H™ — EMm)W* = (H* — EM{)0, W= 0 (199)
taking the matrix element WltFP , | = J gives
W30, W) HE* ~ EP =0 (19b)

so thatW$30, W3 1= 0 and

Oy = —W3AOS W)= WIH0) W= fonuc (19¢)
Thus, the derivative coupling with respect to an overall nuclear
rotation (translation) is given by-i times the corresponding
matrix element of theelectronicangular (linear) momentum
operator. This equivalence provides a stringent test of the
algorithm used to evaluaf¥’. For O)"° = w, a rotation about
tlhe Z-axis, 0% is L,, the electronic orbital angular momentum
about thez-axis. Figure 7 compare‘é andLg;.

In ref 110 it is shown thatL,; is slowly varying and
nonnegligible near a conical intersection. Thus, its continuity
can be used to enforce continuity on the remaining derivative

coupling. This point is also illustrated in Figure 7.

(iv) Approximate Diabatic Bases near a Conical Intersection.
The elimination of the singular part of the derivative coupling
is an essential property of any diabatic basis. Indeed, recently
a promising hybrid adiabatic/diabatic states approach to non-
adiabatic dynamics has been suggested in which cihlg
requirement on the diabatic states is that they eliminate the
singularity in the derivative couplin. A hybrid adiabatic/
diabatic states approach can also be found in ref 111.

As the perturbation theory described above reproduces the
derivative coupling, it can also be used to eliminate it. In
particular, the transformation

q,o,a
|
lpO,a =
J

where ® = A(¢)/2, eliminates the (D) contribution to the

pod
d
)

—sin®
cos®

cos®

sSin® (20)
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Figure 8. For HNCO: Analysis of dipole moment diabatization.
Electronic matrix elements along a circle centered at the conical
intersection in Figure 2. Reported a@(¢), ©(¢) = (r — o — A(p))/

2), In (in eq 24c), the approximate derivative couplisigy ©« = /"

and the derivative coupling computed from ab initio wave functions,
fl.

derivative coupling and produces a diabatic Hamiltonian of the
form

H® = (sx + sy)l —gxa,+ hyo, (21)
Extensions of this expression to higher powerg imave been
reported.o

Approximate diabatic states can also be constructed by
requiring smoothness of a molecular property. We have shown

J. Phys. Chem. A, Vol. 105, No. 26, 2008287

TABLE 3: Cs Double Group

E R=¢? o Ro
a 1 1 1 1
a’ 1 1 -1 -1
e 1 -1 i =i
e’ 1 -1 —i i

These observations reflect eq 24a, which shows that the
transformation to diabatic states generated by eqs 22 and 23
rigorously removes the singularity in the derivative coupling at
the conical intersection.

E. Spin—Orbit Effect and the Noncrossing Rule. When
the spin-orbit interaction is included, the electronic Hamiltonian
may become complex-valued. When this occurs, both the
dimensionality of the seam of conical intersecfiband the
geometric phase effeétare altered. This doesot occur for
molecules with an even number of electrons. For even electron
molecules Wigner observed that the matrix elementsl %=
Hel0 4 Hso can be chosen re&#? so that conical intersections
for He¢' obey the same equations as thoseHi6°. However,
for molecules with an odd number of electrons, the focus here,
He! cannot in general be chosen real-valued. Here we illustrate
the changes in the seam of conical intersection and the geometric
phase that arise when the spiorbit interaction is included the
nonrelativistic Hamiltonian. The spirorbit interaction is
incorporated in a perturbative manriét This analysis will be
relevant to the formation of the van der Waals compiéX'®
Al(?P) + H, — Al—H, and the quenching reacti&f11?
OH(Z") + Hy — OH(II) + H,, problems of considerable
current interest.

We begin by reviewing the electronic structure description
of these states in the presence of the spirbit interaction. In
Cs symmetry &P state or the pair of state€(", 2I1) reduces
to two2A’ and on€A" states. The six states can be transformed
to a time reversal adapted badi. = T¥20 as shown in

Y

2 T

that the rotation angl® = ©A in eq 23 below eliminates the A V2w =i Az T 'lple( 112) (254)

singularity*1%in the derivative coupling. To see this, l&#(r) - 3
be any hermitian (property) operator and define 2°A 2W50=WoA ap) T PR 1) (250)
Aa@ = WRAER)AN ORI () YA VO = Wiy~ Wi (25C)

2A,(2) ™

Ay = WD , . . .
tan 270 = AiT) — A7) 3) A —|\/§lpi? - lII252«'(1/2) N 'qjgéaA’(—UZ) (25)
2N _ 0,a r
Then provided the numerator and denominator do not vanish2 A '*/_lp 22A 112) 'IPZZA'(fIIZ) (250)
simultaneously ag — 7. " . ,
y x 12A —iV2WS, = WO+ W1y (25C)

204¢p)=nr—a—A(¢), n=0,+1,.. (24a)
where the constant offsat, is given by
tana = 2A,(z)/(A () — Ar))  (24b)

Thus,—©A differs by a constant from(¢)/2, the perturbation

theory result. These results are illustrated in Figure 8. which

reports—®* and(¢)/2, and the “invariant”,
I, = (20%(¢) + o + A(@))/r=n (24c)

Note the good agreement betwe®ri(¢) andB(¢) = (7 — a

— A@))/2, and between the approximate derivative coupling

(8l3¢)©(¢) = 4" and the computed derivative couplify.

Herelp,zA(MS) is thel?A adiabatic eigenstate of the nonrelativ-
istic (Coulomb) Hamiltonian wittMs given parenthetically. The

b carry the b= € or €’ representations, the distinct double-
valued irreducible representations of thgdouble group related
by complex conjugation. See Table 3.

Hel(e) andHe!(e"), the Hamiltonian matrices corresponding
to the W and TW sets of eq 25, respectively, are therefore
degenerate and uncoupled a#h®{e") = He(€)*. See discussion
following eq 7. A general discussion of the locus of conical
intersections for this Hamiltonian will be reported as part of a
manuscript describing an analytic gradient driven algorithm for
locating conical intersections ¢'.100 Here, for simplicity, we
restrict to the 3A’, 22A’ space, which can also have a conical
intersection in the absence of spiarbit coupling. For this
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situation, which is encountered f@%, symmetry in A-H, and
OH—H,, Hel(e) is

0,a
Epa

+iy

H E|(e,) _
Eda,

) =sl — €0, + y0, (26)

where i = WIAHOWEN, € = (Egm — Epia )/2, 5= (Egn

+ Eg’giy)/z, and y is real-valued.H®(¢') can only have a
degeneracy og’, the seam foH®!9, wheree is zero. This can
be seen formally by observing the€'(e') can be brought into

diagonal form by the transformation
U=cosfl +sinfo where o= (IO '0) (27)
Noting thate.w = —oy; wo, = oy; oyw = 65 wo, = —ay, and

oo* = oo’ =1,

U'H®U = ol + (—¢ cos D + y sin M)a, + (e sin 20 +
y cos D)o, (28)

which is diagonal with eigenvalues

E,=s=+ (€ + y)"? (29)
provided the coefficient ofy vanishes, that is
tan 0 = —yle (30)

From eq 29 a conical intersection existsat y = 0. Sincee
= 0 this seam is a subset &f and in the case of a triatomic,
the seam is a single point. This is consistent with the noncrossing
rule according to which the inclusion of the spiarbit
interaction reduces the seam of conical intersection from a line,
Nt — 2 =1 to a pointN™ — 3 = 0.

F. Geometric PhaseThe geometric phase effect was first
observed for a symmetric Hamiltonian, by Longuet-Higgifs8
as part of his studies of the Jahheller effect. Let. be a closed
loop beginning aR?, terminating aRN = R and containing a

Yarkony

loop L of radiusp surroundingry has initial and final points,

RO = (p, ¢) andRN = (p, ¢ + 27) with p fixed. To see what
happens to the eigenfunctions along this path, note the follow-
ing: (i) thatHe"%in eq 33 can be brought into diagonal from
by the transformatioO®@(1(¢)/2) (see eq 6a), wherg(¢) is
defined in eq 16c; (ii) that from eq 16c it can be shown that
Mo + 21)/12 = (A(¢p) + 21)/12 = A(p)/2 + m; and (iii) that

0@(r) = —1. Then the eigenfunction with lower energy satis-

fies

WPHriRY) = cos@(¢)/2)PPAriR,) — sinG(#)/2) P57 ;R,)
(34a)

WAr;RY) = cos@(p)/2 + 7)PPAT;R,) — sin(l(¢)/2 +

mWIArR,)
= cos@(¢)/2 + 7)WPPAr;R,) —
sinG(¢)/2 + WWIAriR,)

= —WMriRY) (34b)
that is Wi(r;R9) n —Wr;R9 so thatQy(L) = &. This is
the geometric phase effect. In this ca#é(r;R) is double-
valued as a function ofR; that is, for anyR the sign of
W s indeterminant since it depends on the path to that
point!

(i) He Hermitian. Here we consideH®(€) in eq 26,
extending an analysis due to Stdtisee also ref 119. The basis
functions forHe!(€') are the nonrelativistic adiabatic states and
exhibit a geometric phase effect with respecttoSee Figure
3. By using eq 27, the adiabatic wave functions including the
spin—orbit effect are given by

|

e

a
w) - (

el | i o jse.0
cosOWSy + i sin W5

S - (35)
i sin OWSY + cosowsy

conical intersection. He observed that when an adiabatic waveyhere e = éQ(r)liervP and 6 satisfies eq 30. Equation 35

function lPﬁ"’(r;R), locally continuous inR, is transported

will be used to determin&?; (L) and the derivative coup-

around such a loop, it changes sign; that is, it acquires a phasding.

exp[—iQxk(L)], whereQux(L) = &

WA RY) = expiQ(OWPTRY  (31)
The generalization to complex wave functions required to take
account of the spirorbit interaction was discussed by Stdre.
Subsequently, Berry, provided a result in closed form for general
nonadiabatic processésBerry concluded that
QL) =4, dr WV, W T = Q/2 (32)
whereQ is the solid angle subtended hyat 7«. See Figure 3.
Below the geometric phase is reviewed. Again, it is necessary
to distinguish between the results fBie! symmetric, that is,
real-valued andH® hermitian, that is complex-valued. We begin
with the case thaH® is symmetric and for simplicity use as
adiabatic states the nonrelativistic eigenstatﬁ%,a(r;R), the
solutions to eq 3.
(i) He' SymmetricNearr, a point of conical intersectiod €0
is given, without loss of generality, by

HYxy) = (sx+sy)l + gxo, + hyo,  (33)

Using (o, ¢), wherex = p cos¢ andy = p sin ¢, a circular

As noted above, the geometric phase effect is intrinsically
more complicated in the hermitian case. To evalu@igL),
WPr;R) must be chosen continuous. Here we require that
W7 qr;R+0R)|Wqr;R)Obe real though first order, that is.
IMWPAr;R)|W{r;R)0= 0. Consider a loop around the
z-axis pictured in Figure 3, sufficiently small that t ee’o are
eigenfunctions oH®'%in eq 33, Using eq 35 we find

WeAVWEL] = i(1 — sin 2)V(A/2) (36a)

WHAVWST] = — cos H(VA2) — iVH (36b)
Assume thay = y(2) and that the distances have been scaled
such thaty = zande = p. From the definition of the subtended
angle

Q = —fdSn-r/r* = §dScosg/2 — 20)/r?

=— [ [dppdo——2 1 -
ff ¢P p(22+p2)1/2(22+p2)
—2[x(2(Z + pI)"* — A(Z + 0)")]
= 27(1 — sin 29) (37)
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whereas using eq 36a the integrated phase is

L L B R T T 2
StateJ t=0 utL
Q, = FV(L(@)12)(1 — sin 29) dr = 002 Vh e t=2 Ep
27T . d . - b
ﬂ) (1 —sin29) d¢d_¢ (A@)[2) = (1 — sin 29) (38) 4 Lg VJ_: 1
0.01 ]
so thatQ; = Q/2, which is an example of Berry’s geometric | ')?’;;"'
phase theorem. On the other hand, the circulation of the 505
derivative coupling is, using eq 36b and noting & constant E;; 1 <
along the loop 0 N o ®
Ky

. _ 2 d _ | E_ |
#(cos D(VAI2) — iVh) dr = ﬂ) cosz9d¢d—¢(/1(¢)/2)— . \ | 0.5

mcosd (39) =5 Vi1
. . . R t=6 Statel ]
Thus, for the hermitian case the circulation of the derivative t=12 ]
couplings does not equal the accumulated phase uniess 2 002 L Vertical Symmetric Cone | -1.5
nr; that is, the loop in Figure 3 must contain the point of conical . ]
intersection, in which casg(z) vanishes. H\ PSSR S R B S
0 0.2 04 06 0.8 1

IV. Nuclear Dynamics Near Conical Intersections fits)

As noted in the Introduction conical intersections can affect rigyre 9. For the UL transitionhW*W(L,p,4,t), whereh is the grid
nuclear motion in diverse and novel ways. Below we consider gpacing (independent @) superimposed on the potentMd”™ = +p
two aspects of nonadiabatic transitions induced by conical  (m + v,)%(2Mp?), with Vi = V> andV;, = V' 3"°. For economy of
intersections, the efficiency of UtL transitions for a vertical presentation-hW*W(l,p,¢,t) is reported, so that the statéJ) density
symmetric (Jahn Teller) cone and the propensity for channeling appears on lower (upper) half.
of a wave packet following a LtU transition on a symmetric ) ] ) ) ]
tilted cone. In the course of these discussions the question offunctions can be constructed in a single-valued basis. Thus, in
the differences between same-symmetry conical intersections€d 42bm is an integer. . .
and the more standard, but comparatively rare symmetry- B- Partitioning of HT. The principal differences between a
required (JahnTeller) intersections will be addressed. In order Symmetry-required and a same-symmetry conical intersection
to isolate the effects of the conical intersection from those &re () in the later caségn, S, ands, can be nonnzero and (i)
attributable to other regions of nuclear coordinate space, we the phase anglé(z) is more difficult to construct owing to the
consider the dynamics of wave packets originating in the vicinity absence of symmetry. Both these problems can be addressed
of the conical intersection, with nuclear dynamics restricted to PY rewriting the total Hamiltonian for a general conical potential
the g—h plane. SO t_hat it looks Il_ke the Hamlltonlqn for a symmet_ry-requwed
A. Adiabatic State Formulation. Nuclear dynamics near ~ conical intersection plus, a potential term dependindSeey)
conical intersections are determined from the solution of the @nd & kinetic term depending axy, that is

time dependent Schdinger equation T A s
H =H+K*+V (43)

whereHs" is the Hamiltonian for a symmetry restricted (here
the linear JahnTeller problem),K2 (V9 is the part of the
using the Bora-Huang approach for which nuclear kinetic energy (potential energy) not includedifi
In eq 43 the superscripp (S indicate that the term is
WA 0,p1) = Z‘Pﬁ(r;p,q&) 120 p) WD) (41) nonvanishing only whemA (S), is nonzero. The detailed
o6 description of the Hamiltonian is given the Appendix. There it
) . ) is seen thaHT depends on the quantityn(+ | + 1/,), wherel
(b, ¢) denote the nuclear coordinates in theh plane introduced s an arbitrary integer and constitutes a gauge transformation,
in section I11A WT(r, p,0) — exp(ip)¥T(r, p,¢). From the results of the Ap-
- A0 pendix we conclude tha¥T will be independent of this gauge
Wi(r;p,0) = €W Arp,0) (42a)  transformation (provided the expansionnnis not truncated).
In the two examples that follow, the initial wave packet is
and taken as a symmetric Gaussian ring located on sulfédefor
ak NK 12K : a LtU (UtL) transition, with massN) 10 amu and exponential
2:5(0.8) = En(0.9) = 0%, () 1N/ (27)e™  (42D) —Yo0(p — po)?, Wherea = 10.9 andpo = 1.0. Further details
can be found in ref 33. For the vertical symmetric cage=
The form of the individual terms is key here. Since the origin 1, while for the tilted conalgh = 1, ands, = 0.9.

(iha% - HT)WT’a(r 0.p1) =0 (40)

is a point of conical intersectiorﬁyﬁ"’(r;p,(p) changes sign C. Downward Transitions through a Vertical Symmetric
when ¢ — ¢ + 27. Therefore the geometric phase factor Cone.Valuable insights into near conical intersection dynamics
expliA(¢)] is included in eq 42a to make tlaeliabaticelectronic are obtained from the vertical symmetric cone, which serves as

wave function single-valued as a function of nuclear coordinates. the reference for other conical topographies. For a vertical
This results in modifications to the coupled state nuclear symmetric conical intersection, since both the initial conditions
Schralinger equation. See eq A3 in the Appendix. Having made and potential are independent ¢f ¥*(K,p,¢,t) W(K,p,0,t) =

the electronic wave function single-valued, the nuclear wave W*W(K,p,¢,t) is also. Figure 9 reportd* W superimposed on
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From Figure 10 a clear preference fpr= x is evident for
the wave packet emerging in staleNote that as the wave
packet approaches the conical intersection on suifaeéiected
wave induced oscillations are evident. Such oscillations occur
to a much smaller extent on surfade indicating largely
unfettered escape, f@r = .

There are several factors that can affect the behavior of the
wave packet near a conical intersection for tilted symmetric type
double cones. Sincm is no longer a good quantum number,
the wave packet swirls down the upper cone and also swirls as
its exits on the lower cone. For the tilted cone the preferred
orientations are the same in the upper and lower cones, whereas
for an asymmetric vertical cone they are complementary; that
is, minima on the upper cone are the maxima on the lower cone.
Compare Figure 5b,c.

The origin of the LtU transition for the tilted symmetric cone
is seen from Figure 5c to be the favorable energetics ajong
= 0 onE>? See solid arrow in Figure 5c. For this direction of
approach, the wave packet emerges on the upper surface near

¢ = m, which is the preferred direction for egress on the upper
surface. Consistent with this observatié?i W (J,p,¢,t) finds its
primary support forp nearsz. Swirling on the lower surface
from ¢ = 0 toward¢p = /2, 37/2 (Figure 10t = 9 fs) leads

to transitions onto the upper surface that continue to swirl toward
¢ = . Compare theé = 14 and 16 fs results in statdor ¢ =

72, .

t(fs)

Figure 10. h®*W(L,0,4,t) LtU transition.g = h = 1/¥/2s,= 0.9, s,
= 0. For economy of presentatiop,= 0 is reported in the upper right
guadrantgy = /2 (lower half of figure)—hW*W(l,p,¢,t) is reported,;
and for¢ = z (upper left quadrant)-p is used on the abscissa.

the adiabatic potential for a wave packet originating on surface
J, the upper surface.

For t < 2 the packet maintains its shape, in the radial
direction. This limited change in the wave packet’s shape reflects
the absence of a reflected wave. By 4 fs a scattered wave  Of potential energy surfaces. It had been shown that in some
(from the inner wall) exists on surfacd and (coherent) triatomic moleculed??-1% all of which had Cy, or higher
oscillations are observed on that potential energy surface. AsSymmetry, an intersection or confluence of a symmetry-allowed
time progresses, the portion of the wave packet on potential Seam of conical intersection and a seam of conical intersection
energy surface] becomes concentrated near the conical Of two states of the same-symmetry (a same-symmetry seam)
intersection. Significantly, no oscillations are observed on exists? These intersections of intersections could be anticipated
surfacel (for t < 12 fs). This reflects the absence of a reflected using the cross product of the two vectors that definegthb
wave. In other words, the portion of the wave packet in state  plane?®12’Very recently we uncovered an interesting extension
escapes directly from that region. The minor oscillationstfor ~ of this occurrencé?®12%As noted previously in the tetra-atomic
= 12 fs are most likely the result of small reflection effects, molecule HNCO, the groundA’ state and excitedA" state
produced here by the hard wall at the right-hand boundary. —are connected by a symmetry-allowed seam of conical intersec-

Thus, the lower cone is fully efficient in propagating the wave tion for planarCs geometries. For nonplanar geometries a seam
packet away from the conical intersection. It might be thought of conical intersection of two states of the same symmetry also
that the singularity in the derivative coupling at the conical exists. These represent distinct branches of a common seam.
intersection would lead to a fully efficient transfer of the wave What is surprising is that these seams intersedC{geometries.
packet from surfacd to surface. The existence of a reflected At these intersections = ||h"|| vanishes. It can be shown that
wave on surfacd shows that this is not the case. at the confluence the two seams have a comghbdirection128

Recently, there has been considerable interest in the effectHowever,h¥ of one seam corresponds to a seam direction of
of not including the geometric phaseHtT.9:16:120. 12IThe present the other seam. Thus, the minimal description of this confluence
results offer some interesting insights in this regard. Omission involves three internal coordinates, only one of which makes a
of the geometric phase amounts to taking 1/, + I while m linear contribution to the energy difference at the confluence.
remains an integer. This is not a gauge transformation, and It will be important to establish the prevalence of this feature
identical results cannot be expected. However, differencesand determine whether it has a clear dynamical signature.
evident in practical examples maybe small. This need not be B. Role of Conical Intersections in Nonadiabatic Processes
the case. From eq A7b it is seen that if the geometric phaselnvolving LtU Transitions. The O¢P) + H,O — OH + OH
had been omitted as described above and the ghage-1 reaction is a nonadiabatic process involving, at least formally,
were used, this wave packet would not decay at all! two or more changes of electronic state. The near linear conical

D. Upward Transitions: The Importance of Tilt. By intersection in Figure 4 guided our demonstratfrof barri-
symmetry W*W(K,p,/2t) = W*W(K,p,37/2t). Figure 10 erless collinear paths connecting reactants and products. In
reports®@*W(K,p,4,t) for the LtU transition through the tilted  addition, the collinear paths, by enforcifid and®A degenera-
symmetric cone defined above. Onty= 0, 7/2 (7/2,7) are cies can reduce the number of nonadiabatic transitions required
reported for staté (J), reflecting wave packet propagation to to reach the products. The wave packet studies of section IV
largerp for ¢ = 7 on surfacd and the negligible contributions  show that sufficiently tilted cones can provide favorable
for ¢ = 0 on surfacel. pathways for LtU transitions. The importance of conical

V. Unanswered Questions

A. Intersecting SeamsConical intersections are intersections
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intersections in UtL transitions is well established. However, whereq(¢)? = (g2 cog ¢ + h? sir? ¢)
this is not the case for LtU transitions, which are much less

well studied in polyatomic molecules. It will be important o THKK(y v) = p.p + (p-VAK) + 2VAK-p + VAK-VAK + K

assess the extent to which the pathways offered by conical (A3a)

intersections are actually involved in this class of nonadiabatic

processes. T xy) = (p + VA (=) " + (i) F-*-(p + VAY
(A3b)

VI. The Future
wherek? = [PW{-pWil In the symmetry-required casge)
The study of electronically nonadiabatic processes goes back= 1. thatisg = h. This can be formally achieved for this general
approximately 70 years to the pioneering work of Rf€d3! case by the change of variablgs= xg, y' = yh. However,
and of Londort22 According to the golden ruté®13nonadia- now the kinetic energy must be modified withp-p replaced
batic transitions are driven by a product of the density of states DY 40gn* (PP’ + Agnp'op’) where AB = ABy — AyBy. HT
and a coupling matrix element. The size of the matrix element ¢&n be rewritten (dropping the primes), as
is expected to increase if an avoided intersection is replaced by
a conical intersection. Thus, the recent realization that conical HT(xy) = H¥(xy) + KA(xy) + S(Xy) (A4)
intersections of states of the same symmetry are not rare
occurrences necessitates a reevaluation of the importance ofvhere
these two contributions to the decay mechanism. This will
require both experimental and theoretical work on small systems HS™k(y y) = (2M)‘1T+’KK(x,y)6K L=
in the gas phase where increasingly accurate models can be KL Sl KL
introduced and validated. Transfer of this expertise to the liquid pdghaz M) T (X'y)oy,KL
phase and to larger (biologically relevant) systems, where = HY(x,y) + T (xy) (A5a)
nonadiabatic processes, have long been known and studied, has
already begun and its continuation is essential. For adiabaticKA,KL
processes advanced tools for handling solvent effects are
currently availablé3® as are techniques for handling larger
systems by combining quantum mechanics and molecular Stxy) = SXY)0x (A5c)
mechanicg34 The use of these techniques to address problems
in nonadiabatic chemistry has already begun and can be expectegyhere T-, eq A5b, is obtained fromT+ by replacing -
to continue to grow in future. everywhere by.. Equation 4 is a principal result of this
Finally, we note that field of nonadiabatic dynamics has seen Appendix.
enormous growth with the advent of (efficient) algorithms for To take advantage of the fact that only #x&omponent of
locating conical intersections in nonrelativistic Hamiltonians. the derivative coupling is singular, it is convenient to re-express
These algorithms treat conical intersections of states of the samesq 4 in polar coordinates. To this end, we replace
spin multiplicity but are otherwise quite general. (Algorithms
for locating intersections of noninteracting states are not at issue al _, _ Am —1/2¢
here.) Very recently, an algorithm to locate conical intersections Ko " 2im(P9) V(@)™ Em () (A6)
for Hamiltonians that include relativistic, sptorbit, effects has . .
been reported?® Such algorithms can bzfméxpected to bring and observe tha' - (+ _1/2)_¢’ for | aq lntle%er; the singular
similar insights to nonadiabatic processes for which relativistic comfoner;t of the f|rs£t derivaitve SOUpI'm’ga fy :all(zf’)’ Land
effects are important. m"Pﬂ'p‘PLD: PG = dwp 2 WRIpWID= K& =
In summary, nonadiabatic chemistry is a field with a long Okf ;p~? cos 2. Equation 5a becomes
history and much work that remains to be done.

(X,y) = Ti'KK(Xry)éK,L + Ti'KL(XIy)O'x,KL (A5b)

2 (Il+m+Y,)>?
THKK _ 5 QK O T T 2k (A7a)
Appendix e = ap? 0? m
The goal of this Appendix is to show how the deviations T @l (m+1+7)) | D
from a Jahna-Teller symmetric potential that occur for same- e ~i0m o Gmy p2 ‘Smu (A7b)

symmetry conical intersections are reflected in the Hamiltonian.

T . ) . .
The wave packe¥ T is expanded in adiabatic electronic state eq A5b becomes

basis
2 5
WHrxy) =y Ry 2 ) WO (A1) KA = BK (én’mla—T LA
o= n, n 2 ap ap pz
2m+1+21,) 3]
The total Hamiltonian is given I§§ _— =
P dp
- T+’”(X y) KE(X,V) 6n,m2[ 3T 0 (m +1 - 1)2 - 5/4
T _ 1 d - —
H (xy) = (2u) ”kf(x,y) T"9(xy) 2 |9pap pz
; 2m+1—-") 5 KD
T (xy)oy| + Sy — pdya(@)e, (A2) s 9 EmuI(A8a)
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(I+m+2) 13)
0 e B a
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5n’m2(('+L2‘1) L1 i))
o

A _ e AR l |
Knv,mu - IKnv,rm - ZEnv

& | nsb)

pap

and eq A5c becomes

e = O Onmea(Sc+iS)/2 +
Onm-1(S, — i8)/2)Eh | pl&m, 0 (ABC)
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