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During the past decade the perception of conical intersections has changed. It is now appreciated that what
was once viewed largely as a theoretical curiosity is an essential aspect of electronically nonadiabatic processes.
Concomitantly, our understanding of this singular consequence of the Born-Oppenheimer separation of nuclear
and electronic motion has grown enormously. In this work the theory of conical intersections is reviewed.

I. Introduction

While the adiabatic or Born-Oppeneimer single potential
energy surface approximation is valid for the preponderance of
chemical processes, nonadiabatic transitions, which extend
nuclear motion to more than one Born-Oppenheimer potential
energy surface, are at the heart of such essential processes as
vision, light harvesting,1,2 charge transfer reactions,3 and a
myriad of processes in the upper atmosphere. In the past decade
it has become apparent that conical intersections, including those
of two states of the same symmetry, which were once little more
than a theoretical curiosity, are an essential aspect of electroni-
cally nonadiabatic phenomena, touching most if not all areas
of nonadiabatic chemistry. From the energy storage initiated
by the cis-trans isomerization of retinal protonated Schiff base
in bacteriorhodopsin,49 to the observation of quantized or step-
like structure in the rate constant for photodissociation of
ketene,50,51to ultrafast decay of azulene,30 to the geometric phase
in H + H2 scattering,48,52 conical intersections must be
considered.

Consequently there has been considerable interest in non-
adiabatic processes induced by conical interactions.4-22 Conical
interactions influence nonadiabatic processes in several ways.
The interstate couplings are large near, and singular at, a conical
intersection. These large couplings can lead to ultrafast decay
of electronically excited states; that is, they facilitate upper state
to lower state (UtL) transitions.15,23-31 Conical intersections with
the appropriate topography can also facilitate transitions from
a lower state to an upper state (LtU),32,33 for example, in
endothermic charge-transfer reactions,34 a point that has received
inadequate attention. A wave packet passing through a conical
intersection, as opposed to a transition state, may be routed to
more than one product.35,36 Finally, conical intersections give
rise to the geometric phase effect,37-39 which necessitates
changes in the nuclear Schro¨dinger equation in the adiabatic
representation.

In this work recent advances in our understanding of this
consequence of the Born-Oppenheimer40 separation of nuclear
and electronic motion are reviewed. Whenever possible, the
basic ideas are illustrated with examples. However, since much
of the progress in the past decade has been a consequence of
formal and algorithmic advances, for those interested in a more

complete description, additional details are provided. Thus,
section II provides an introduction to the electronic structure
topics to be developed in this review while section III describes
those topics in more detail. In these sections conical intersections
are defined, and such essential concepts as theg-h41 or
branching32 plane, the geometric phase effect,37,39,42 the non-
crossing rule,43 the derivative couplings,44 and diabatic bases45,46

are reviewed. The effects of the spin-orbit interaction on the
geometric phase effect and the noncrossing rule are discussed.
The spin-orbit interaction is singled out for special consider-
ation since it produces qualitative changes in the locus of points
conical intersection. While all conical intersections produce the
geometric phase effect, not all conical intersections are topo-
graphically equivalent. In section IV the time dependent
Schrödinger equation is used to consider the effect of the
topography of a conical intersection on nuclear dynamics. As a
prelude to this treatment, section III includes a perturbative38,47

analysis of the energetics and derivative couplings near a conical
intersection. The preponderance of fully quantum mechanical
treatments of nonadiabatic nuclear dynamics near conical
intersections4-9,11,12,14-22 are carried out in a diabatic basis15 to
avoid numerical problems associated with the singular derivative
couplings in the adiabatic representation.48 However, here the
adiabatic representation is used. It has been argued that in the
appropriate coordinates, the singularity in the derivative coupling
at the conical intersection is quite tractable and can in fact be
used to advantage.33 Section V describes some open questions
raised in this work, while section VI briefly considers directions
for future investigation.

The focus of this overview is the conical intersection itself.
Therefore, there is no separate examples/applications section.
Rather, conical intersections determined as part as of larger
studies are included in the individual sections as illustrations.
The illustrations are drawn from two studies ongoing in my
laboratory, the dissociation of photoexcited HNCO,

which has been the object of many experimental and theoretical

HNCO(S0 ) X1A′) + hν f

HNCO(S1 ) 1A′′) f H + NCO(X2Π) (1a)

f HN(a1∆) + CO (1b)
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studies,53-56 and the highly nonadiabatic reaction of oxygen and
water,

where the reactants are in any of the 13A′, 1,23A′′ states while
the products are in either the 33A′ or 33A′′ states.

In HNCO photodissociation a large barrier precludes directed
dissociation on S1 to produce H+ NCO.57,58 Access to this
channel is achieved via S1-S0 internal conversion facilitated
by a seam of conical intersection. The seam was determined as
a function of R(C-N), reflecting the fact that following
photoexcitationR(C-N) increases as a consequence of a stable
trans isomer on S1.59 These conical intersections are considered
in this work. The O+ H2O f OH(X2Π) + OH(A2Σ+) reaction
is key to understanding the ultraviolet plume originating from
the control engines of the space shuttle or the Soyez engines of
Russian service vehicles.60-62 A proposed mechanism reflects
insights gained from points on a portion of the seam conical
intersection. The HOH-O conical intersection considered in
this review is essentially collinear. This seam of conical
intersection can be understood as the well-known63,64 1Σ+-1Π
seam of conical intersection in water, coupled to an O(3P) in a
3Π orientation relative to the HOH axis. This high-symmetry
arrangement of the nuclei, which is accessible to both the
reactants and products with little or no barrier (beyond the
endoergicity), provides a favorable path for reaction 2.

II. Overview

Within the Born-Oppenheimer separation of nuclear and
electronic motion the Born-Oppenheimer potential energy
surfaces,EI

0,a(τ), and the adiabatic electronic statesΨI
0,a(r ;R)

are the eigenvalues and eigenfunctions of the electronic Hamil-
tonianHel,0(r ;R). Herer ) (r1, r2, ..., rNel) are the coordinates
of theNel electrons,R ) (R1, R2, ... ,RNnuc) are the space-fixed
frame coordinates of theNnuc nuclei, and we have noted that
the EI

0,a depend only onτ, the 3Nnuc - 6 ) Nint internal
coordinates, defined below.

A. Conical Intersections and theg-h Plane: Privileged
Directions. At τx (or Rx), a point of conical intersection, two
Born-Oppenheimer potential energy surfaces, denotedI andJ
) I + 1, intersect forming a double cone. Theseamis the locus
of these points of conical intersection. The dimension of the
seam is discussed below. A seam of conical intersection is
pictured in Figure 1 from two perspectives. While neither part
is complete, taken together they correctly describe the seam.
Figure 1a depicts a single point on the seam,τx. The adiabatic
energies,EK

0,a, K ) I, J, are plotted vs the two internal
coordinates, denotedgIJ (the tuning coordinate65) andhIJ (the
coupling coordinate), for which the energy has the shape of a
double cone. Here “tuning” refers to the fact that one can “tune
in” on a specific conical intersection by changing the displace-
ment alonggIJ. Figure 1b depicts the connectivity of the points
of conical intersection, the seam. In that figure theEK

0,a, K ) I,
J, are plotted against one conical (a coupling (hIJ) or tuning
(gIJ)) coordinate (heregIJ is used) and one nonconical or seam
(z) coordinate. In Figure 1b the seam is a (thick dashed) line
and the topography of the lower (upper) potential energy surface
along the seam is that of a (an upside down) ridge. This plot,
while accurate, is in a sense misleading. It leaves the impression
that if the seam were a convex up parabola, the extreme point
would resemble a transition state, with thegIJ direction playing
the role of the reaction coordinate. This is not the case. The
second conical direction evident in Figure 1a makes the

topography of the lower surface more like that of series of
extrema with two negative eigenvalues. This analogy to extrema

O(3P) + H2O f OH(X2Π) + OH(A2Σ+) (2)

Figure 1. (a) Tilted asymmetric conical intersection.EI
0,a, lower cone,

and EJ
0,a, upper cone, plotted in the branching org-h plane. (b)

Conical intersection in (a) plotted against one coordinate in theg-h
plane and one coordinate on the seam perpendicular to theg-h -plane.
EI

0,a, lower wedge, andEJ
0,a, upper wedge. The point of conical

intersection in (a) becomes the ridge line in (b).
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is only approximate sinceEI
0,a is not differentiable atτx. In

summary, the minimal description of the energetics of a seam
of conical intersection requires at least four dimensions,E, gIJ

andhIJ, and one seam coordinate. In this case the ridge pictured
in Figure 1b becomes a “ridge” of mountain peaks.

gIJ andhIJ are nuclear displacements akin to the normal modes
characteristic of an equilibrium geometry. The plane formed
by these two coordinates, the branching32 or g-h41 plane, is a
key concept in the theory of conical intersections. Its determi-
nation is an essential first step in characterizing a conical
intersection. As discussed in section IIIagIJ is the gradient of
the energy difference whilehIJ is, to a good approximation, the
product of the energy difference and the derivative coupling
vector; see below. Figure 2 depicts the two displacements
defining theg-h plane in terms of atom-centered displacements
for a point on the S1(1A′′)-S0(X1A′) seam of conical intersection
in HNCO.

B. Noncrossing Rule.The dimensionality of the seam of
conical intersection is described by the noncrossing rule,
deduced by Wigner and von Neumann43 some 70 years ago.
While generally applicable, this rule is most relevant to conical
intersections where symmetry does not play a role, that is,
conical intersections of two states of the same symmetry, or
just same-symmetry intersections. According to thisnoncrossing
rule the seam of conical intersection(for Hel,0 the usual
Coulombic Hamiltonian)may haVe dimension Nint - 2, for
same-symmetry intersections where Nint is the number of internal
degrees of freedom.Equivalently,two internal coordinates must
be Varied to find an intersection.

This result is perhaps counterintuitive. Consider a model two
electronic state problem:

We seek theτ ) τx, for which E1
0,a(τx) - E2

0,a(τx) ) 0. Since
this is one equation, its solution may be achieved by varying
one internal coordinate, for any choice of the remainingNint -
1 internal coordinates. Of course, solutions may not exist for
real values of the coordinates, so we would say the seammay
have dimensionNint - 1 or that the solution space has
codimension 1. However, even with this caveat the result is
NOT correct. The problem with this argument is that it assumes
that theEI

0,a are independent functions ofτ. They are not, in
general, since they are the eigenvalues of a single matrix. When
E1

0,a(τ) and E2
0,a(τ) come from distinct symmetry blocks, they

are independent functions ofτ andN - 1 is, in fact, the correct
answer. However, in that caseN is the number of internal
degrees of freedom, consistent with the symmetry in question.

Thus, the noncrossing rule describes what can be, rather than
what is. It is not an existence theorem. Its implication, that two
internal coordinates must be varied to find an intersection, if it
exists, is not a practical means of locating points on the seam.
Perhaps for this reason, as recently as the 1970s, the importance
and even the existence of conical intersection of two states of
the same symmetry were questioned.66,67In section III we revisit
the original work of von Neumann and Wigner while discussing
a practical approach for locating conical intersections.68

C. Derivative Couplings and the Adiabatic and Diabatic
Representations.Since the locus of points of conical intersec-
tion is a space of dimensionNint - 2 one might question the
importance of this topographical feature since it occupies a
negligible volume in nuclear coordinate space. In fact, conical
intersections would be of limited importance if it were not for
the derivative couplings, projected gradients of the electronic
wave functions

These interactions provide the coupling between the adiabatic
electronic states. It is the finite range of these coupling that
extends the “effective size” of the conical intersections to a
nonnegligible volume and thus are responsible for nonadiabatic
events.

In the definition aboveWi is a nuclear coordinate. While the
gradient of theEK

0,a with respect to noninternal coordinates
vanishes, as a result of theR dependence ofΨ0,a, the derivative
couplings are nonzero forWi, an internal or noninternal
coordinate. Derivative couplings with respect to internal coor-
dinates are of principal concern in this review. However, the
derivative couplings with respect to noninternal coordinates have
observable consequences giving rise toλ-doubling in diatomic
molecules.69 Other consequences of this class of derivative
couplings are described in section III.

While of fundamental importance the derivative couplings
are frequently cited as difficult to evaluate,48 being singular, in
the adiabatic representation, at a point of conical intersection.
This has limited the use of the adiabatic representation for the
description of nonadiabatic dynamics and led to the development
of the diabatic electronic states.45,46,70,71 For a historical
perspective on diabatic states including reference to the early
work of Lichten,72 O’Malley,73 and Smith,70 see ref 71. Diabatic
states, constructed from the adiabatic states to preserve the
concept of an electronic energy, are designed to reduce or
eliminate the derivative coupling.45,74

Because of the computational problems caused by the
singularity in the derivative coupling, its removal is a key issue
in studying nuclear dynamics near conical intersections.75

Figure 2. Branching, org-h, plane.gIJ (top panel) andhIJ (bottom
panel) in terms of atom-centered displacements for HNCO withR(C-
N) ) 2.95a0, where the remaining parameters are chosen to minimize
the energy of the point of intersection. Also shown in the top panel is
gIJ with R(C-N) ) 2.65a0.

f Wi

JI (τ) ) 〈ΨJ
0,a(r ;R)| ∂

∂Wi
ΨI

0,a(r ;R)〉
r

Hel,0(τ) ) (E1
0,a(τ) 0

0 E2
0,a(τ) )
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Surprisingly, perhaps, the singularity is comparatively easy to
remove. In section III we describe the nature of the singularity
in the derivative coupling and how it can be eliminated by a
transformation to approximate or quasi-diabatic states. Two
approaches are described, quasi-diabatic states based on a
perturbative determination of the derivative coupling47 and on
smoothness of a molecular property.76-78 Using (F, φ), polar
coordinates in theg-h plane, we show (section IIIA) that the
singular part of the derivative coupling is given by

whereλ(φ) is expressed in terms ofg andh, the lengths of the
vectors defining theg-h plane. It has the above indicated
particularly simple form wheng/h ) 1 (identified below as a
Jahn-Teller,79,80 vertical symmetric or peaked, cone). We
further demonstrate (see, for example, Figure 7 in section III)
that this approximation is of sufficient quality to obViate the
need to determine this largest component of the deriVatiVe
coupling using ab initio waVe functions. It is then shown that
the rotation of the pair of adiabatic states by-λ(φ)/2 produces
a pair of approximate diabatic states with a nonsingular
derivative coupling.

Although diabatic bases are used for the preponderance of
the fully quantum mechanical treatments of nonadiabatic
dynamics involving conical intersections, recent work suggests
that the adiabatic representation, which offers conceptual
advantages,5 may not be as intractable as previously suggested.33

The point is discussed in section V.
D. Complex-Valued Hamiltonians and the Spin-Orbit

Effect. The preponderance of this presentation considers the
nonrelativistic (Coulomb) Hamiltonian, which is real-valued.
The noncrossing rule stated above applies to this real-valued
(symmetric) Hamiltonian. However, when the number of
electrons is odd, relativistic effects, in particular the inclusion
of the spin-orbit interaction,81,82 lead to a complex-valued,
hermitian, Hamiltonian.

For a complex-valued Hamiltonian the conclusion of the
noncrossing rule is that the dimensionality of the seam isNint

- 3. TheNint - 3 result is, in turn, rigorous for the Hamiltonian
considered, that is, a Hamiltonian with a single degeneracy.
However, for an odd number of electrons there is an additional
complicating factor, Kramers’ degeneracy.83 Kramers’ degen-
eracy, a consequence of time reversal symmetry,84 requires states
of systems with odd numbers of electrons to be (at least) 2-fold
degenerate. This changes the nature of the Hamiltonian that must
be considered when looking for intersecting surfaces.85 When
Cs symmetry can be imposed, the result remainsNCs - 3. Here,
NCs is the number of degrees of freedom that preserveCs

symmetry. However, in the absence of symmetry, the seam, if
it exists, has dimensionNint - 5.85

This change in dimensionality toNCs - 3 or Nint-- 5 has
profound implications for the geometric phase effect discussed
below. These implications are illustrated using a molecule in a
doublet state constrained toCs symmetry. We consider the
intersection of two adiabatic eigenstates of the nonrelativistic
Hamiltonian, perturbed by the spin-orbit interaction. As
described in section III, the Hamiltonian matrix has the form

where γ is real. This Hamiltonian has a seam of conical

intersection of dimension Nint - 3 comprising the subspace of
the nonrelatiVistic seam for which the spin-orbit coupling
Vanishes.For a triatomic molecule the intersection seam reduces
to a point, as is illustrated in Figure 3.

E. Geometric Phase Effect.(i) Diabolical Conical Intersec-
tions.Longuet-Higgins37 noted that when a real-valued adia-
batic wave function is transported around aclosed loop in
nuclear coordinate space containing a conical intersection the
wave function must change sign. This is the geometric phase
effect. The geometric phase effect, perhaps the signature
property of a conical intersection, necessitates modification of
the nuclear Schro¨dinger equation built from adiabatic electronic
states.37,42 See section IV. It is notable for its long range,
affecting nuclear dynamics under conditions when the wave
function never encounters the associated conical intersection.52,86

When the conical intersections in question arise from two states
of the same symmetry, they are difficult to anticipate and may
go unnoticed. For that reason we have, following Berry,87 termed
such conical intersections,diabolical.41,88

(ii) ProVing the Existence of a Conical Intersection.Conical
intersections determined from numerical procedures are never
exactly degenerate. The verification of the geometric phase
effect, however, provides incontrovertible evidence of the
existence of a conical intersection. This approach has been used
in the past to establish the existence of conical intersections.89-91

An alternative, much less tedious, method for confirming the
existence of a point of conical intersection, evaluates the
circulation, the line integral92 around a closed loop, of the
derivative coupling.47 It has been shown47 that if the loop
contains a conical intersection, then as the radius approaches
zero

On the other hand, if the closed loop does not enclose a conical
intersection, theF f 0 limit of the circulation is 0.42 In the
language of the geometric phase effect,for an infinitesimal loop
the circulation of the deriVatiVe coupling equals the accumulated
phase. Numerous applications of this approach have been
reported.51,93-96

To use the above results, loops in nuclear coordinate space
containing a conical intersection are required. Such loops are
readily defined using thegIJ andhIJ vectors. Figure 4 displays
the nuclear configurations that constitute a loop around the

(1/F)f φ
JI )

1
2F

∂

∂φ
λ(φ)98

g/hf1 1
2F

[EI
0,a iγ

-iγ EJ
0,a]

Figure 3. 2A1 - 2B2 conical intersection seam without spin-orbit
interaction,s0 (red) and with spin-orbit interaction, s1 (purple point).
Also shown is a closed loop (green) surroundings0 subtending a solid
angleΩ with respect to the single conical intersection point,s1.

IfJI(τ)‚dτ f π
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(nearly) collinear conical intersections in O-HOH noted in the
Introduction. It is also worth noting that the potential for
bifurcating nuclear dynamics exists. Motion along the positive
gIJ direction points toward H2O + O, which motion along the
(hIJ axis points toward OH+ OH.

(iii) Spin-Orbit Interaction and the Geometric Phase Effect.
The affect of the spin-orbit interaction on the geometric phase
effect in odd electron systems is particularly interesting. Since
the dimension of the seam is now no bigger thanNint - 3, the
idea of a loop enclosing or not enclosing a conical intersection
must be revised.39 As illustrated in Figure 3, one should consider
the solid angle,Ω, subtended by the loop viewed from the point
of conical intersection. Berry has shown39 that the change in
phase of the wave function is exp((iΩ/2), which becomes-1
(Ω ) 2π) when the loop contains the point of intersection. Here
the - (+) sign applies to the lower (upper) state. An example
of these ideas, suggested by the work of Stone97 (see also ref
98), will be provided in sections IIIE and IIIF. It is also shown
that in the case of a complex hermitian Hamiltonian the
circulation of the derivative coupling does not equal the
accumulated phase.

F. Conical Topographies and Elementary Cones.In the
adiabatic representation nonadiabatic transitions are driven by
the derivative coupling. At the conical intersection the derivative
coupling is singular. To quantify the propensity for a nonadia-
batic transition near a conical intersection, requires, at minimum,
the energy and singular part of the derivative couplings. Using
perturbation theory, one can show that the conical topography
is completely described by nuclear displacements in the branch-
ing32 or g-h41 plane defined by the tuning and coupling

coordinatesgIJ andhIJ. In thisg-h plane the conical topography
can be described, in terms of four conical parameters,g, h, sx,
andsy deduced from the characteristic vectorsgIJ, hIJ, andsIJ

(the gradient of (EI
0,a + EJ

0,a)/2 see below). In particular, it is
shown41 that EK

0,a is given by

whereσw (w ) x, y, z) are the Pauli spin matrices,84 I is a 2×
2 unit matrix andF ) 0 is a point of conical intersection. In
section III we demonstrate (see, for example, Figure 7 in that
section) thatthis approximation is of sufficient quality to obViate
the need to determine the electronic energy using an ab initio
waVe function in the immediateVicinity of a conical intersection.

It will prove useful re-express the conical parameters as, a
strength parameter,dgh

2 ) g2 + h2, an asymmetry parameter,
∆gh ) (g2 - h2)/(g2 + h2), and two tilt parameters,sx/dgh )
sx/g andsy/dgh ) sy/h. This parametrization (see eqs 16 and 17
in section IIIC) and an analysis of the nuclear Schro¨dinger
equation near a conical intersection, described in section IV,
suggest that it is useful to classify the double cones as in Chart
1. Here the attribute “symmetric” refers only to∆gh, the middle
column gives the labeling used herein, and the third column
indicates approximate correspondences with an earlier labeling
due to Ruedenberg and co-workers.32 These basic cones are
pictured in Figure 5. Here the vertical symmetric double cone
is that corresponding to a symmetry-required E-typeC3V
irreducible representation.79 Only this double cone, for which
g ) h andsx ) sy ) 0, is fully symmetric; that is, the energies
are independent ofφ, the angle that takes you around the cone.
Note too the striking difference in theφ dependence induced
by ∆gh * 0, middle panels, and bysx * 0 and* sy, bottom
panels. The implications of this difference are discussed in
section IV using wave packet dynamics.

III. Conical Intersections: In More Detail

The adiabatic electronic potential energy surfaces,EI
0,a(τ),

are the eigenvalues ofHel,0, the nonrelativistic coulomb Hamil-
tonian:

We will also have occasion to considerHel ) Hel,0 + Hso, where
Hso is the spin-orbit operator treated at the Breit-Pauli
level.81,82,99However, even in this case, for molecules comprised
of low Z (e∼36) atoms, it is, as discussed below, useful to
consider adiabatic states described by eq 3.

When onlyHel,0 is considered,τx, points of conical intersec-
tion of statesI and J ) I + 1, are a subset of the internal
coordinatesτ, for which ∆EIJ

0,a(τ) ≡ EI
0,a(τ) - EJ

0,a(τ) ) 0.
WhenHso is included, degenerate states ofHel in the adiabatic
basisΨI

0,a are sought.
A. g-h or Branching Plane. The vectorsgIJ and hIJ,

rigorously defined below, form the basis of a generalized polar
coordinate system, the intersection adapted,32 or conical,41

CHART 1

parameters classification33 classification32

∆gh ) sx ) sy ) 0 vertical symmetric peaked
∆gh * 0, sx ) sy ) 0 vertical asymmetric
∆gh ) 0, sx and/orsy * 0 tilted symmetric ∼semilevel (sx/dgh ) sy/dgh ∼ 1)

∼sloped (sx/dgh ) sy/dgh < 1)

Figure 4. For O(3P) + H2O: Center figure givesg-h or branching
space for a point on the 23A′′-33A′′ seam of conical intersection. Outer
figures describe a loop around that point of conical intersection.φ )
0, π correspond to+x, -x axis displacements, whileφ ) π/2, -π/2
correspond to+y, -y axis displacements.

E0,a(F,φ) ≈ F[(sx cosφ + sy sinφ)I -

(g2 cos2 φ + h2 sin2
φ)1/2σz]

[Hel,0(r ;R) - EI
0,a(τ)]ΨI

0,a(r ;R) ) 0 (3)
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cooordinates wherex ) gIJ/g, y ) hIJ/h, ||gIJ|| ) g, ||hIJ|| ) h.
The remainingNint - 2 internal coordinates, referred to as seam

coordinates, and denotedzi, i ) 1, ...,Nint - 2 are orthogonal
to the (x, y) plane and to each other. A seam coordinatez3 for

Figure 5. Sections of the potential energy surface for (a) a vertical symmetrical cone (top panel),dgh ) 0.11 and∆gh ) sx ) sy ) 0; (b) vertical
asymmetric cone,dgh ) 0.11,∆gh ) 0.99, andsx ) sy ) 0 (middle panel); and (c) tilted symmetric cone (bottom panel)dgh ) 0.11,∆gh ) 0, sx )
0.2 andsy ) 0. Dashed (solid) lines are upper (lower) cone.
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the g-h plane in Figure 2 is given in Figure 6 which also
illustrates the result of a displacement along-z3. This displace-
ment, orthogonal to theg-h plane, approximately connects two
points on the seam of conical intersection,R(C-N) ) 2.65a0

andR(C-N) ) 2.95a0. The displaced point is only on the seam
in an approximate sense since orientation of theg-h plane
changes with the position on the seam; that is, the seam is not
a (generalized) straight line.

For motion in theg-h plane it is useful to define the polar
coordinates,F a size coordinate, andφ a shape coordinate byx
) F cosφ, y ) F sin φ. For fixed F, the path mapped out by
increasingφ by 2π represents a circle surrounding the point of
conical intersection. For this reason these polar coordinates are
useful in the description of geometric phase effect. An example
of motion for F fixed and 0< φ < 2π is shown in Figure 4.
See also ref 101.

(i) EValuation of gJI and hJI. In the past, theg-h plane was
determined by fitting the energies along loops around the conical
intersection. However, with the use of analytic gradient tech-
niques44 determination of theg-h plane is no harder than
determination of the gradient of the adiabatic energy,102,103

∇EJ
0,a(τ). Below is outlined the basic idea behind this impor-

tant advance.47

ExpandΨK
0,a in a configuration state function104 (CSF, ψ)

basis:

where thecK are solutions of the configuration interaction
problem:

andHel,0(τ) is the electronic Hamiltonian in theψ basis. Then
(gIJ, hIJ ) are given by

It is also convenient to define

In eqs 5a-c, ∇Hel,0, the gradient of the Hamiltonian matrix, is
the same gradient used to evaluate∇EJ

0,a. This enablesgIJ, hIJ,

sIJ, andfIJ (see below) to be evaluated with a single algorithm.44

Construction of∇Hel,0 and the evaluation of the right-hand sides
of eqs 5a-5c are described in refs 44 and 68.

(ii) Symmetry and the Orthogonality ofgIJ andhIJ. Symmetry
is an important aspect of theg-h plane. Figure 2 depicted the
two coordinates defining theg-h plane in terms of atom-
centered displacements. There the role of symmetry is evident.
The molecule is (approximately) in theX-Y plane in nuclear
coordinate space. The states in question, the S0 and S1 states of
HNCO, have1A′ and1A′′ symmetry. The mode labeledhIJ, the
coupling mode, is seen to have the a′′ symmetry required to
couple an A′ and an A′′ state. The tuning mode,gIJ has a′
symmetry. It is important to note that this symmetry does not
arise a priori from the calculation.τx, determined by a numerical
procedure that does not enforce symmetry, is planar to an
excellent approximation. However, since the electronic states
are (nearly) degenerate, the symmetricalgIJ andhIJ in Figure 2
are mixed by the small deviation from planarity. The observed
symmetry is restored by the following simple orthogonalization
procedure.105

In general,gIJ andhIJ constructed from eqs 5a-c need not
be orthogonal. This results from the degeneracyEI

0,a(τx) )
EJ

0,a(τx) as a result of which the orthonormal eigenfunctions,
cI(τx) and cJ(τx), are determined only up to a rotation by an
angleâ. These “nascent”gIJ andhIJ may not reflect the point
group symmetry atτx and may not appear to be continuous along
the seam. These limitations can be avoided by exploiting the
very the flexibility that created the problem.105 Rotating the
cI(τx) andcJ(τx) by angleâ

transformsgIJ andhIJ to γIJ andηIJ where

Then requiring thatγIJ‚ηIJ ) 0 gives forâ

Since tan(R + mπ) ) tanR for m ) 0, (1, (2, ..., and noting
that 2â is required to evaluateγIJ andηIJ, the solutions of eq
6c, can be taken asâ ) â0 + m π/4 for m ) (1, 2. ThegIJ and
hIJ reported in Figures 2 and 4, were orthogonalized using eq
6c. The orthogonality constrainedgIJ andhIJ, which, as noted
above, have the appropriate point group symmetry, greatly
simplify the description of the seam of conical intersection.

Interestingly, from eq 6agIJ andhIJ are interchanged via the
transformationO(2)((π/4). This may seem counterintuitive since
gIJ is an energy difference gradient whilehIJ is a coupling term.
In fact, this interchange is only possible at the conical intersec-
tion where it is simply a consequence of the degeneracy.

B. Noncrossing Rule.Conical intersections are not isolated
points but are continuously connected, forming seams. The
noncrossing rule, the classic 1929 theorem of Eugene P. Wigner
and John von Neumann,43 describes the dimensionality of the
seam or, equivalently, the number of internal coordinates that
must be simultaneously varied to locate aτx.

(i) Noncrossing Rule: A Dimensionality Theorem. According
to the noncrossing rulefor a symmetric (hermitian) matrix, it
is necessary to change two (three) parameters to achieVe a pair

Figure 6. For HNCO: seam coordinatez(3) for the conical intersection
point in Figure 2 and displacement along the seam coordinate to an
adjacent point of conical intersection.

(cjI

cjJ
)) (cosâ -sin â

sin â cosâ )(cI

cJ
)) O(2)(â)[cI

cJ
] (6a)

γIJ ) (gIJ cos 2â + hIJ sin 2â) and

ηIJ ) (hIJ cos 2â - gIJ sin 2â) (6b)

tan 4â0 )
2[hIJ‚gIJ]

[||hIJ||2 - ||gIJ||2]
(6c)

ΨK
0,a(r ;R) ) ∑

R)1

NCSF

cR
K(τ) ψR(r ;R) (4a)

[Hel,0(τ) - EK
0,a(τ)]cK(τ) ) 0 (4b)

2gIJ(τ) ) cI†
(τx)[∇Hel,0(τ)]cI(τx) - cJ†

(τx)[∇Hel,0(τ)]cJ(τx)
(5a)

hIJ (τ) ) cI†
(τx)[∇Hel,0(τ)]cJ(τx) (5b)

2sIJ(τ) ) cI†
(τx)[∇Hel,0(τ)]cI(τx) + cJ†

(τx)[∇τH
el,0(τ)]cJ(τx)

(5c)
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of degenerate eigenValues. Interestingly, the validity of the
noncrossing rule has been questioned on several occa-
sions.66,67,106For this reason the simple yet elegant argument
of Wigner and von Neumann is reproduced here on the basis
of the translation of their work in ref 107.

In section II it was noted that the eigenvaluesEI
0,a(τ) of an

hermitian matrix were not independent functions ofτ. The
essential idea in proof of Wigner and von Neumann is to use a
representation for which the eigenvalues are in fact independent
variables. Using this representation the number of independent
parameters inH is determined, in the absence of any degeneracy,
and with a single degeneracy.The difference represents the
number of parameters that may be changed to determine a
degeneracy.

The required representation is the “spectral representation”
in which anN x N hermitian matrix is represented in terms of
a unitary matrixU(τ), U†U ) I , and a diagonal matrixE with
diagonal elementsEPP ≡ EP by

The key point is that someU when used in eq 7 are redundant.
To proceed, it is necessary to consider two cases,H is hermitian,
complex-valued, withHRâ* ) HâR, andH is symmetric, real-
valued, withHRâ ) HâR. For the sake of brevity the results for
H symmetric are placed in bold square brackets[ ] , immediately
following the results forH hermitian.

When H is complex-valued[real-valued] U is unitary
[orthogonal] and consists of 2N2 [N2] real numbers, of which,
sinceU†U ) I , N2 [N(N - 1)/2] are unique, that isU hasN2

[N(N - 1)/2] independent parameters,pU(N) ) N2 [N(N - 1)/
2]. See Table 1.

SinceU appears quadratically in eq 7, not allU lead to distinct
H. Consider, for the hermitian, and only the hermitian, case
the nontrivial unitary matrixU(k) given by

for, k ) 1, ...,N. InsertingU(k) into eq 7 leavesH unchanged.
Thus, in the unitary [orthogonal] case forE nondegenerate or
equivalently with anm-fold degeneracy form ) 1, there areN
[0] redundant transformations,rU(N,m)1) ) N [0]. See Table
1.

For a single m-fold degeneracy inE, with m > 1 the unitary
[orthogonal] matrix withm2 [m(m - 1)/2] parameters

leavesH unchanged since that portion ofE is a constant times
the m × m unit matrix. Thus,rU(N,m>1) ) rU(N-m,m)1) +
m2 ) (N - m) + m2 [m(m- 1)/2]. Finally, since here the unique
elements ofE are independent,E containsd(N,m) ) N - m+1
[N - m + 1] arbitrary parameters. Thus, the number of
parameters inH of dimensionN with a singlem-folddegeneracy
is pH(N,m) ) pU(N,m) + d(N,m) - r(N,m), which is given in
Table 1. The number of free parameters inH at an intersection
is, ∆pH(1,2) ) pH(N,1) - pH(N,2). See Table 1.

For the complex caseN ) N andm ) 1, pH(N,1) ) N2 + 1
- 1 ) N2. This result could have been obtained more directly
by noting thatH has 2N(N - 1)/2 (off-diagonal real parameters)
+ N (diagonal real parameters)) N2 (real parameters). ForH
real-valuedpH(N,1) ) N(N + 1)/2 - 1 + 1 ) N(N + 1)/2,
again as expected. ForN ) N, and m ) m in the hermitian
[symmetric] casepH(N,m) ) N2 - m2 + 1 [N(N + 1)/2 + 1 -
m(m + 1)/2] parameters. Thus, onem-fold degeneracy renders
∆pH(1,m) ) m2 - 1 [m(m + 1)/2 - 1] of theN2 [N(N - 1)/2]
parameters arbitrary. The casem ) 2 is of particular interest
and yields 3 [2] as promised.

(ii) An Illustration: 2 × 2 Case.In the 2× 2 case introduced
in section II the degenerate hermitian [symmetric] matrix has
pH(2,2) ) 22 - 22 +1 ) 1 [3 - 3 + 1 ) 1] free parameter
corresponding to the result

It is illuminating to consider this case in further detail. Noting
that E can be written

and restricting to the symmetric case whereU is orthogonal
from eq 7

Thus, as expected,H is defined by three parameterss, ε, and
φ, and is degenerate providedε ) 0, with E ) s. Away from a
degeneracy all three parameters are required to defineH.
However at the degeneracy, sincem ) 2, rU(2,2)) 2(2 + 1)/2
- 2 ) 1, one parameter of the orthogonal transformation,φ,
becomes undefined, andd(2,2) ) 1 (the choice ofs). Further,
when the seam is mapped out, sincepH(2,2)) 1, oneparameter
may be fixed (s) and, since∆pH(1,2) ) 2, two parameters
(ε, φ) varied to achieve a degeneracy. Here, choice of parameters
is not arbitrary, onlys can be fixed andφ andε must be varied.
The search for degeneracies is not performed directly in thes,
ε, andφ space but rather in theτ space. This is permitted since
s ) s(τ), φ ) φ(τ), and ε ) ε(τ). However, in this case, a
particular value ofs cannot be specified; that is,s cannot be
held fixed. If τk is the component ofτ to be held fixed the
requirement∂s/∂τk * 0 must hold.

(iii) Noncrossing Rule for Molecules with an Odd Number
of Electrons.As pointed out in section IID for odd electron
molecules in the absence of spatial symmetry, the seam of
conical intersections has dimensionNint - 5 and has dimension
NCs - 3 whenCs symmetry exists. It will prove illuminating
below to point to the origin of the discrepancy with the results
of the previous section. The key here is time reversal symmetry

TABLE 1: Noncrossing Rulea

pU(N) d(N,m) rU(N,m) pH(N,m) ∆pH(1,2)

H Hermitian
N2 N - m + 1 m2 + N - m N2 - m2 + 1 3

H Symmetric
{N} - N N - m + 1 {m} - m {N} - {m} + 1 2

a {K} ) K(K + 1)/2, ∆pH(m,n) ) pH(N,m) - pH(N,n).

HRâ(τ) ) ΣpqUpR(τ)*Ep(τ)Upâ(τ) (7)

U(k)(φ) ) [1 0
1

eiφ

1
0 1

] (8a)

U(j,k) ) [1 0
1
u11 u12

u21 u22

0 1
] (8b)

H ) [E 0
0 E]

E ) (s 0
0 s ) + (-ε 0

0 ε ) (9a)

H ) (s 0
0 s ) + (cosφ -sinφ

sinφ cosφ )(-ε 0
0 ε )(cosφ sinφ

-sinφ cosφ )
(9b)

) (s - ε cos 2φ -ε sin 2φ
-ε sin 2φ s + ε cos 2φ ) (9c)
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as a consequence of which all eigenstates come in degenerate
pairs. To accommodate this requirement, a basis in which the
functions come in pairs,ψR and TψR, where T is the time
reversal operator,84 is used. A point of conical intersection is
therefore a point of degeneracy 4. Naively applying the result
of section IIIBii gives 42 - 1 ) 15, rather than the expected 5!
The discrepancy arises from the fact that not all the matrix
elements ofH are independent, so that not all unitary transfor-
mations can be used to buildH. In particular, using standard
properties of the time reversal operator,84 we find that

While the general case is not readily treated in this approach,
the Cs result is straightforward. Rewrite eq 7 in block form

whereE is a real-valued diagonalN x N matrix and, if〈φi|εj〉 )
Uij

II, then〈Tφi|Tεj〉 ) Uij
TITI. When a plane of symmetry exists,

all (TψR,ψâ) vanish by symmetry, givingUITI ) 0 andUII* )
UTITI. Thus,U is determined byUII so that the analysis of section
IIIBii can be used and∆pH(1,2) ) 3. For a treatment of the no
symmetry case see ref 108.

C. Algorithm for Locating Conical Intersections. The
noncrossing rule describes the dimensionality of the intersection
space and prescribes limits on how to search for a point of
intersection. It does not, however, provide a means for locating
points in that space. Several approaches for locating individual
points of conical intersection currently exist.68,109 Below is
described the algorithm we have developed.

Assumeτ is near but not atτx, that isτ + δτ ) τx. Expand
Hel,0(τ) in a Taylor series aboutτ:

Taking matrix elements with (cI(τ),cJ(τ)) gives the 2× 2 matrix

where∆EIJ ) EI
0,a - EJ

0,a andI is a 2× 2 unit matrix.Hel,0(τx)
will have degenerate roots provided

which using eq 11 becomes

Equation 13 is the basis for an efficient algorithm for locating
τx. However, these equations determine only two components
of δτ, as required by the noncrossing rule. Thus,δτ is
underdetermined. The remainingδτ can be determined using
either or both (i) geometric constraintsCI(τ) ) 0 and (ii) energy
minimization. We implement these additional constraints using
Lagrange multipliers. The functional

is expanded to second order and an extremum is sought with

respect toτ and the Lagrange multipliersê andλ, giving

whereQIJ(τ,ê,λ) ) ∇τ∇τLIJ andk(τ) ) ∇τC(τ). Note that eqs
15b and 15c are eq 13 and eq 15d imposes the constraints while
the first equation minimizes the constrained energy. Table 2
illustrates the convergence properties of this algorithm for aτx

in HNCO. The adiabatic states are described using an expansion
comprising∼3.5 × 106 CSFs. The convergence is seen to be
quite rapid.

D. Energies, Derivative Couplings, and Diabatic Bases.
(i) Energies and DeriVatiVe Couplings Using Intersection
Adapted Coordinates.In the adiabatic representation nonadia-
batic transitions are driven by the derivative coupling,

At a conical intersection the derivative coupling is singular. To
quantify the propensity for a nonadiabatic transition, requires,
at minimum, the singular component(s) of the derivative
coupling and the energies. The importance of the parameters
sIJ, gIJ, andhIJ introduced previously is that they determine both
the singular component of the derivative coupling and the linear
or conical portion of the energy atτx. This can be shown using
a degenerate perturbation theory originally used by Mead to
describe X3 systems.38 In particular,47 for τ near aτx and in the
g-h plane,Ek

0,a,(1)(τ), the linear part of the electronic energy,
EK

0,a(τ), K ) I, J, can be expressed in terms ofg, h or dgh, ∆gh

andsx ) sIJ‚x, sy ) sIJ‚y, by

where

Further, the singularity in the derivative coupling is restricted

TABLE 2: For HNCO, Convergence to τx on Planar Trans
Seam with R(C-N) ) 2.65a0 from τx with R(C-N) ) 2.85a0

R(CN) R(CO) ∠NCO Ex (cm-1) ∆E (cm-1) norma

2.8500 2.3321 103.00 5907.4 0.1102(1)
2.6573 2.3645 98.80 8222.9 151.91 0.4215(-2)
2.6501 2.3609 98.10 8833.9 5.9057 0.7595(-2)
2.6501 2.3568 98.20 8811.3 44.898 0.8324(-2)
2.6500 2.3594 98.20 8855.3 8.0157 0.5795(-2)
2.6500 2.3588 98.00 8835.6 1.9092 0.2435(-2)
2.6500 2.3579 98.20 8836.6 0.63871 0.8132(-3)

a Norm is norm of right-hand side of eq 15. Characteristic base 10
in parentheses.

[QIJ(τ,ê,λ) gIJ(τ) hIJ(τ) k(τ)

gIJ(τ)† 0 0 0

hIJ(τ)† 0 0 0

k(τ)† 0† 0† 0
][δτ

δê1

δê2

δλ
] )

-[gI(τ) + ê1g
IJ(τ) + ê2h

IJ(τ) + λ†k(τ)
∆EIJ(τ)
0
C(τ) ] (15a)

(15b)
(15c)
(15d)

f τ
JI(τ) ) 〈ΨJ

0,a(r ;R)| ∂∂τ
ΨI

0,a(r ;R)〉r
(16a)

(EI
0,a,(1) 0

0 EJ
0,a,(1)) )

F(sx cosφ + sy sinφ)I - Fq∆(φ)σz (17a)

q(φ)2 ) g2 cos2 φ + h2 sin2
φ ) dgh

2(1 + ∆gh cos 2φ)/2 )

dgh
2q∆(φ)2 (17b)

〈φ|Hú〉 ) 〈Tφ|HTú〉* (10)

H ) (UII UITI

UTII UTITI )†(ε 0
0 ε )(UII UITI

UTII UTITI ) (7′)

Hel,0(τ + δτ) ≈ Hel,0(τ) + ∇τH
el,0(τ) δτ (11a)

Hel,0(τ + δτ) ) (EIJ
avg(τ) + sIJ(τ)‚δτ)I + (∆EIJ(τ) +

gIJ(τ)‚δτ)σz + hIJ(τ)‚δτσx (11b)

HIJ
el,0(τ+δτ) ) 0 and HII

el,0(τ+δτ) - HJJ
el,0(τ+δτ) ) 0

(12)

hIJ(τ)‚δτ ) 0 and ∆EIJ(τ) ) -gIJ(τ)‚δτ (13)

LIJ(τ,ê,λ) ) EI
a(τ) + ê1∆EIJ(τ) + ê2H IJ

el,0(τ) + λ†‚C (14)
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to theφ component and is given by

where

Note that both the derivative coupling and the energy difference
are expressed in terms ofg and h. This reflects the fact that
these quantities are not independent but are related to each other
using, for example, perturbation theory. Figure 7 illustrates the
use of eqs 17a and 16b reporting, for the conical intersection
given in Figure 2, theEI

0,a and f φ
IJ, obtained from the ab initio

wave functions and compares them with the perturbative results
EI

0,a,(1) and f φ
IJ,(1). In this figureF ) 0.1a0 andφ ) 0, ..., 2π.

The agreement between the ab initio quantities and their
perturbative approximations, which require virtually no time to
evaluate, is seen to be excellent. Thus, close to a conical
intersection, the perturbative results can be used in lieu of costly
ab initio calculations.

(ii) Confirming the Existence of a Conical Intersection.It is
interesting to observe that the circulation, the line integral92

around a closed loop, satisfies

This is to be expected since from eqs 16b and 16c asF f 0

Had the loop not contained a singularity (conical intersection)

this circulation would have to approach zero asF f 0. These
observations are significant since conical intersections deter-
mined from numerical procedures are never exactly degenerate.
The verification of eq 18b provides a computationally expedient
method for proving the existence of a conical intersection.

There is one caveat, the quadrature in eq 18a is sensitive to
the sign off φ

IJ when |f φ
IJ| is small, in Figure 7 nearφ ) 0, π.

However, this sign can be determined, without determining a
large number of points, using the fact that the derivative
couplings with respect to noninternal coordinates are slowly
varying near a conical intersection.110 The evaluation of these
derivative couplings, which also provides a stringent check
of the algorithm for evaluating thef τ

IJ, is briefly described
below.

(iii) Deri VatiVe Couplings with Respect to Noninternal
Coordinates.The f κ

IJ are nonvanishing forκ ) τ, an internal
coordinate, as well as forκ ) Onuc, an overall rotation or
translation of the nuclei. However, unlikef τ

IJ, f Onuc
IJ can be

expressed as the matrix element of an electronic operator. This
can be readily demonstrated as follows. DefineOk ) ∑j)1

Nk
oj

k

andoj
k ) rj

kipj
k or oj

k ) ipj
k, k ) nuc, el. Then, since space is

homogeneous, [Hel,Oγ] ) 0 whereO ) Oel + Onuc, and since
EI

0,a depends only onτ

taking the matrix element withΨJ
0,a, I * J gives

so that〈ΨJ
0,a|Oγ|ΨI

0,a〉 ) 0 and

Thus, the derivative coupling with respect to an overall nuclear
rotation (translation) is given by-i times the corresponding
matrix element of theelectronicangular (linear) momentum
operator. This equivalence provides a stringent test of the
algorithm used to evaluatefIJ. For Oγ

nuc ) ω, a rotation about
the Z-axis, Oel is Lz, the electronic orbital angular momentum
about theZ-axis. Figure 7 comparesf ω

IJ andLz,IJ.
In ref 110 it is shown thatLz,IJ is slowly varying and

nonnegligible near a conical intersection. Thus, its continuity
can be used to enforce continuity on the remaining derivative
coupling. This point is also illustrated in Figure 7.

(iV) Approximate Diabatic Bases near a Conical Intersection.
The elimination of the singular part of the derivative coupling
is an essential property of any diabatic basis. Indeed, recently
a promising hybrid adiabatic/diabatic states approach to non-
adiabatic dynamics has been suggested in which theonly
requirement on the diabatic states is that they eliminate the
singularity in the derivative coupling.75 A hybrid adiabatic/
diabatic states approach can also be found in ref 111.

As the perturbation theory described above reproduces the
derivative coupling, it can also be used to eliminate it. In
particular, the transformation

where Θ ) λ(φ)/2, eliminates the (1/F) contribution to the

Figure 7. For HNCO: Electronic matrix elements along a circle
centered at the conical intersection in Figure 2 withF ) 0.1a0. E11A

0,a

andfφ, the component of the derivative coupling that is singular at the
conical intersection from ab initio wave functions (open symbols with
lines) and perturbation theory (filled symbols).fω (open triangles with
lines) derivative coupling with respect to a rotation about theZ-axis
passing through the center of mass and the equivalentLz (×’s).

(1/F) f φ
JI ≈ (1/F) f φ

JI,(1)≡ gh/(2Fq(φ)2) )

(g/h + h/g)q∆(φ)2 ) 1/(2F)
∂

∂φ
λ(φ) (16b)

g cosφ ) q(φ) cosλ(φ) and h sinφ ) q(φ) sin λ(φ)
(16c)

If φ
IJ(φ) dφ ∼ π (18a)

If φ
IJ(φ) dφ98

Ff0
1/2∫0

2πdλ(φ)
dφ dφ ) π (18b)

Oγ(H
el,0 - EI

0,a(τ))ΨI
0,a ) (Hel - EI

0,a(τ))OγΨI
0,a ) 0 (19a)

〈ΨJ
0,a|Oγ|ΨI

0,a〉(EJ
0,a - EI

0,a) ) 0 (19b)

Oγ,JI
el ) -〈ΨJ

0,a|Oγ
el|ΨI

0,a〉 ) 〈ΨJ
0,a|Oγ

nuc|ΨI
0,a〉 ≡ f Oγ

nuc
JI (19c)

(ΨI
0,a

ΨJ
0,a)) (cosΘ -sin Θ

sin Θ cosΘ )(ΨI
0,d

ΨJ
0,d) (20)
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derivative coupling and produces a diabatic Hamiltonian of the
form

Extensions of this expression to higher powers inF have been
reported.105

Approximate diabatic states can also be constructed by
requiring smoothness of a molecular property. We have shown
that the rotation angleΘ ) ΘA in eq 23 below eliminates the
singularity110 in the derivative coupling. To see this, letAel(r)
be any hermitian (property) operator and define

Then provided the numerator and denominator do not vanish
simultaneously asτ f τx

where the constant offset,R, is given by

Thus,-ΘA differs by a constant fromλ(φ)/2, the perturbation
theory result. These results are illustrated in Figure 8. which
reports-ΘA andλ(φ)/2, and the “invariant”,

Note the good agreement betweenΘµ(φ) andΘ(φ) ) (π - R
- λ(φ))/2, and between the approximate derivative coupling
(∂/∂φ)Θµ(φ) ≡ f φ

µ,IJ and the computed derivative couplingf φ
IJ.

These observations reflect eq 24a, which shows that the
transformation to diabatic states generated by eqs 22 and 23
rigorously removes the singularity in the derivative coupling at
the conical intersection.

E. Spin-Orbit Effect and the Noncrossing Rule. When
the spin-orbit interaction is included, the electronic Hamiltonian
may become complex-valued. When this occurs, both the
dimensionality of the seam of conical intersection43 and the
geometric phase effect39 are altered. This doesnot occur for
molecules with an even number of electrons. For even electron
molecules Wigner observed that the matrix elements ofHel )
Hel,0 + Hso can be chosen real,112 so that conical intersections
for Hel obey the same equations as those forHel,0. However,
for molecules with an odd number of electrons, the focus here,
Hel cannot in general be chosen real-valued. Here we illustrate
the changes in the seam of conical intersection and the geometric
phase that arise when the spin-orbit interaction is included the
nonrelativistic Hamiltonian. The spin-orbit interaction is
incorporated in a perturbative manner.113 This analysis will be
relevant to the formation of the van der Waals complex114,115

Al( 2P) + H2 f Al-H2 and the quenching reaction116,117

OH(2Σ+) + H2 f OH(2Π) + H2, problems of considerable
current interest.

We begin by reviewing the electronic structure description
of these states in the presence of the spin-orbit interaction. In
Cs symmetry a2P state or the pair of states (2Σ+, 2Π) reduces
to two 2A′ and one2A′′ states. The six states can be transformed
to a time reversal adapted basisΨne′

e,0 ) TΨne′′
e,0 as shown in

HereΨI2A(Ms)
0,a is the I2A adiabatic eigenstate of the nonrelativ-

istic (Coulomb) Hamiltonian withMs given parenthetically. The
ΨIb

e carry the b) e′ or e′′ representations, the distinct double-
valued irreducible representations of theCs double group related
by complex conjugation. See Table 3.

Hel(e′) andHel(e′′), the Hamiltonian matrices corresponding
to the Ψ and TΨ sets of eq 25, respectively, are therefore
degenerate and uncoupled andHel(e′′) ) Hel(e′)*. See discussion
following eq 7′. A general discussion of the locus of conical
intersections for this Hamiltonian will be reported as part of a
manuscript describing an analytic gradient driven algorithm for
locating conical intersections inHel.100 Here, for simplicity, we
restrict to the 12A′, 22A′ space, which can also have a conical
intersection in the absence of spin-orbit coupling. For this

Figure 8. For HNCO: Analysis of dipole moment diabatization.
Electronic matrix elements along a circle centered at the conical
intersection in Figure 2. Reported areΘµ(φ), Θ(φ) ) (π - R - λ(φ))/
2), In (in eq 24c), the approximate derivative coupling∂/∂φ Θµ ≡ f φ

µ,IJ

and the derivative coupling computed from ab initio wave functions,
f φ

IJ.

Hel,d) (sxx + syy)I -gxσz+ hyσx (21)

AKL(τ) ) 〈ΨK
0,a(r ;R)|Ael(r )ΨL

0,a(r ;R)〉r (22)

tan 2ΘA(τ) )
2AIJ(τ)

AJJ(τ) - AII(τ)
(23)

2ΘA(φ) ) nπ - R - λ(φ), n ) 0, (1, ... (24a)

tanR ) 2AIJ(τx)/(AII(τx) - AJJ(τx)) (24b)

In ≡ (2ΘA(φ) + R + λ(φ))/π ) n (24c)

TABLE 3: Cs Double Group

E R) σ2 σ Rσ

a′ 1 1 1 1
a′′ 1 1 -1 -1
e′ 1 -1 i -i
e′′ 1 -1 -i i

Ψ

12A′ x2Ψ1e′
e,0 ) Ψ12A′(1/2)

0,a + iΨ12A′(-1/2)
0,a (25a′)

22A′ x2Ψ2e′
e,0 ) Ψ22A′(1/2)

0,a + iΨ22A′(-1/2)
0,a (25b′)

12A′′ x2Ψ3e′
e ) Ψ12A′′(1/2)

0,a - iΨ12A′′(-1/2)
0,a (25c′)

TΨ

12A′ -ix2Ψ1e′′
e,0 ) Ψ12A′(1/2)

0,a - iΨ12A′(-1/2)
0,a (25a′′)

22A′ -ix2Ψ2e′
e,0 ) Ψ22A′(1/2)

0,a - iΨ22A′(-1/2)
0,a (25b′′)

12A′′ -ix2Ψ3e′′
e ) Ψ12A′′(1/2)

0,a + iΨ12A′′(-1/2)
0,a (25c′′)
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situation, which is encountered forC2V symmetry in Al-H2 and
OH-H2, Hel(e′) is

where iγ ) 〈Ψ1e′
e,0|Hso|Ψ2e′

e,0〉 , ε ) (E22A′
0,a - E12A′

0,a )/2, s ) (E22A′
0,a

+ E12A′
0,a )/2, and γ is real-valued.Hel(e′) can only have a

degeneracy ons0, the seam forHel,0, whereε is zero. This can
be seen formally by observing thatHel(e′) can be brought into
diagonal form by the transformation

Noting thatσzω ) -σy; ωσz ) σy; σyω ) σz; ωσz ) -σy; and
ωω* ) ωω† ) I ,

which is diagonal with eigenvalues

provided the coefficient ofσx vanishes, that is

From eq 29 a conical intersection exists atε ) γ ) 0. Sinceε

) 0 this seam is a subset ofs0, and in the case of a triatomic,
the seam is a single point. This is consistent with the noncrossing
rule according to which the inclusion of the spin-orbit
interaction reduces the seam of conical intersection from a line,
Nint - 2 ) 1 to a pointNint - 3 ) 0.

F. Geometric Phase.The geometric phase effect was first
observed for a symmetric Hamiltonian, by Longuet-Higgins,37,118

as part of his studies of the Jahn-Teller effect. LetL be a closed
loop beginning atR0, terminating atRN ) R0 and containing a
conical intersection. He observed that when an adiabatic wave
function ΨK

0,a(r ;R), locally continuous inR, is transported
around such a loop, it changes sign; that is, it acquires a phase
exp[-iΩKK(L)], whereΩKK(L) ) π

The generalization to complex wave functions required to take
account of the spin-orbit interaction was discussed by Stone.97

Subsequently, Berry, provided a result in closed form for general
nonadiabatic processes.39 Berry concluded that

whereΩ is the solid angle subtended byL at τx. See Figure 3.
Below the geometric phase is reviewed. Again, it is necessary

to distinguish between the results forHel symmetric, that is,
real-valued andHel hermitian, that is complex-valued. We begin
with the case thatHel is symmetric and for simplicity use as
adiabatic states the nonrelativistic eigenstates,ΨK

0,a(r ;R), the
solutions to eq 3.

(i) Hel Symmetric.Nearτx a point of conical intersectionHel,0

is given, without loss of generality, by

Using (F, φ), wherex ) F cosφ and y ) F sin φ, a circular

loop L of radiusF surroundingτx has initial and final points,
R0 ) (F, φ) andRN ) (F, φ + 2π) with F fixed. To see what
happens to the eigenfunctions along this path, note the follow-
ing: (i) that Hel,0 in eq 33 can be brought into diagonal from
by the transformationO(2)(λ(φ)/2) (see eq 6a), whereλ(φ) is
defined in eq 16c; (ii) that from eq 16c it can be shown that
λ(φ + 2π)/2 ) (λ(φ) + 2π)/2 ) λ(φ)/2 + π; and (iii) that
O(2)(π) ) -I . Then the eigenfunction with lower energy satis-
fies

that is ΨI
a(r ;R0) f

L
-ΨI

a(r ;R0) so that ΩII(L) ) π. This is
the geometric phase effect. In this caseΨI

a(r ;R) is double-
Valued as a function ofR; that is, for anyR the sign of
ΨI

a is indeterminant since it depends on the path to that
point!

(ii) Hel Hermitian. Here we considerHel(e′) in eq 26,
extending an analysis due to Stone;97 see also ref 119. The basis
functions forHel(e′) are the nonrelativistic adiabatic states and
exhibit a geometric phase effect with respect tos0. See Figure
3. By using eq 27, the adiabatic wave functions including the
spin-orbit effect are given by

where Ψ̃je′
e,0 ) eiΩ(τ)Ψ̃je′

e,0 and θ satisfies eq 30. Equation 35
will be used to determineΩII(L) and the derivative coup-
ling.

As noted above, the geometric phase effect is intrinsically
more complicated in the hermitian case. To evaluateΩII(L),
ΨI

e,a(r ;R) must be chosen continuous. Here we require that
〈ΨI

e,a(r ;R+δR)|ΨI
e,a(r ;R)〉 be real though first order, that is.

Im〈δΨI
e,a(r ;R)|ΨI

e,a(r ;R)〉 ) 0. Consider a loop around the
z-axis pictured in Figure 3, sufficiently small that theΨie

e,0 are
eigenfunctions ofHel,0 in eq 33, Using eq 35 we find

Assume thatγ ) γ(z) and that the distances have been scaled
such thatγ ) zandε ) F. From the definition of the subtended
angle

Hel(e′) - (E12A′
0,a -iγ

+iγ E22A′
0,a ) ≡ sI - εσz + γσy (26)

U ) cosθI + sin θω where ω ) (0 i
i 0) (27)

U†HelU ) sI + (-ε cos 2θ + γ sin 2θ)σz + (ε sin 2θ +
γ cos 2θ)σx (28)

E( ) s ( (ε2 + γ2)1/2 (29)

tan 2θ ) -γ/ε (30)

ΨI
0,a(r ;R0) 98

L
exp(-iΩII(L))ΨI

0,a(r ;RN) (31)

ΩII(L) ) IL dτ 〈ΨI
e,a|∇τΨI

e,a〉r ) Ω/2 (32)

Hel,0(x,y) ) (sxx + syy )I + gxσz + hyσx (33)

ΨI
0,a(r ;R0) ≡ cos(λ(φ)/2)ΨI

0,a(r ;Rx) - sin(λ(φ)/2)ΨJ
0,a(r ;Rx)

(34a)

ΨI
0,a(r ;RN) ≡ cos(λ(φ)/2 + π)ΨI

0,a(r ;Rx) - sin(λ(φ)/2 +

π)ΨJ
0,a(r ;Rx)

) cos(λ(φ)/2 + π)ΨI
0,a(r ;Rx) -

sin(λ(φ)/2 + π)ΨJ
0,a(r ;Rx)

) -ΨI
0,a(r ;R0) (34b)

(ΨI
e,a

ΨJ
e,a) ) (cosθΨ̃1e′

e,0 + i sin θΨ̃2e′
e,0

i sin θΨ̃1e′
e,0 + cosθΨ̃2e′

e,0) (35)

〈ΨI
e,a|∇ΨI

e,a〉r ) i(1 - sin 2θ)∇(λ/2) (36a)

〈ΨI
e,a|∇ΨJ

e,a〉r ) - cos 2θ(∇λ/2) - i∇θ (36b)

Ω ) -IdSn‚r /r3 ) IdScos(π/2 - 2θ)/r2

) -∫∫dφ F dF z

(z2 + F2)1/2

1

(z2 + F2)
)

-2[π(z/(z2 + F2)1/2 - z/(z2 + 0)1/2)]

) 2π(1 - sin 2θ) (37)
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whereas using eq 36a the integrated phase is

so thatΩII ) Ω/2, which is an example of Berry’s geometric
phase theorem. On the other hand, the circulation of the
derivative coupling is, using eq 36b and noting thatθ is constant
along the loop

Thus, for the hermitian case the circulation of the derivative
couplings does not equal the accumulated phase unless 2θ )
nπ; that is, the loop in Figure 3 must contain the point of conical
intersection, in which caseγ(z) vanishes.

IV. Nuclear Dynamics Near Conical Intersections

As noted in the Introduction conical intersections can affect
nuclear motion in diverse and novel ways. Below we consider
two aspects of nonadiabatic transitions induced by conical
intersections, the efficiency of UtL transitions for a vertical
symmetric (Jahn-Teller) cone and the propensity for channeling
of a wave packet following a LtU transition on a symmetric
tilted cone. In the course of these discussions the question of
the differences between same-symmetry conical intersections
and the more standard, but comparatively rare symmetry-
required (Jahn-Teller) intersections will be addressed. In order
to isolate the effects of the conical intersection from those
attributable to other regions of nuclear coordinate space, we
consider the dynamics of wave packets originating in the vicinity
of the conical intersection, with nuclear dynamics restricted to
the g-h plane.

A. Adiabatic State Formulation. Nuclear dynamics near
conical intersections are determined from the solution of the
time dependent Schro¨dinger equation

using the Born-Huang approach for which

(F, φ) denote the nuclear coordinates in theg-h plane introduced
in section IIIA

and

The form of the individual terms is key here. Since the origin
is a point of conical intersection,ΨK

0,a(r ;F,φ) changes sign
when φ f φ + 2π. Therefore the geometric phase factor
exp[iA(φ)] is included in eq 42a to make theadiabaticelectronic
wave function single-valued as a function of nuclear coordinates.
This results in modifications to the coupled state nuclear
Schrödinger equation. See eq A3 in the Appendix. Having made
the electronic wave function single-valued, the nuclear wave

functions can be constructed in a single-valued basis. Thus, in
eq 42bm is an integer.

B. Partitioning of H T. The principal differences between a
symmetry-required and a same-symmetry conical intersection
are (i) in the later case∆gh, sx, andsy can be nonnzero and (ii)
the phase angleA(τ) is more difficult to construct owing to the
absence of symmetry. Both these problems can be addressed
by rewriting the total Hamiltonian for a general conical potential
so that it looks like the Hamiltonian for a symmetry-required
conical intersection plus, a potential term depending onS(x,y)
and a kinetic term depending on∆gh, that is

whereHsr is the Hamiltonian for a symmetry restricted (here
the linear Jahn-Teller problem),K∆ (VS) is the part of the
nuclear kinetic energy (potential energy) not included inHsr.
In eq 43 the superscript∆ (S) indicate that the term is
nonvanishing only when∆ (S), is nonzero. The detailed
description of the Hamiltonian is given the Appendix. There it
is seen thatHT depends on the quantity (m + l + 1/2), wherel
is an arbitrary integer and constitutes a gauge transformation,
ΨT(r,F,φ) f exp(ilφ)ΨT(r,F,φ). From the results of the Ap-
pendix we conclude thatΨT will be independent of this gauge
transformation (provided the expansion inm is not truncated).

In the two examples that follow, the initial wave packet is
taken as a symmetric Gaussian ring located on surfaceI (J) for
a LtU (UtL) transition, with mass (M) 10 amu and exponential
-1/2R(F - F0)2, whereR ) 10.9 andF0 ) 1.0. Further details
can be found in ref 33. For the vertical symmetric conedgh )
1, while for the tilted conedgh ) 1, andsx ) 0.9.

C. Downward Transitions through a Vertical Symmetric
Cone.Valuable insights into near conical intersection dynamics
are obtained from the vertical symmetric cone, which serves as
the reference for other conical topographies. For a vertical
symmetric conical intersection, since both the initial conditions
and potential are independent ofφ, Ψ*(K,F,φ,t) Ψ(K,F,φ,t) ≡
Ψ*Ψ(K,F,φ,t) is also. Figure 9 reportsΨ*Ψ superimposed on

ΩII ) I∇(λ(φ)/2)(1 - sin 2θ) dτ )

∫0

2π
(1 - sin 2θ) dφ

d
dφ

(λ(φ)/2) ) π(1 - sin 2θ) (38)

I(cos 2θ(∇λ/2) - i∇θ) dτ ) ∫0

2π
cos 2θ dφ

d
dφ

(λ(φ)/2) )

π cos 2θ (39)

(ip ∂

∂t
- HT)ΨT,a(r ;F,φ,t) ) 0 (40)

ΨT,a(r ,F,φ,t) ) ∑
R,K

Ψ̃K
a(r ;F,φ) øR

a,K(F,φ) wR
a,K(t) (41)

Ψ̃K
a(r ;F,φ) ) eiA(φ)ΨK

0,a(r ;F,φ) (42a)

øR
a,K(F,φ) f ễmν

K (F,φ) ) F1/2êmν
K (F)1/x(2π)eimφ (42b)

Figure 9. For the UtL transition,hΨ*Ψ(L,F,φ,t), whereh is the grid
spacing (independent ofφ) superimposed on the potentialV(

sr,m ) (F
+ (m + 1/2)2/(2MF2), with VI ) V -

sr,0 andVJ ) V +
sr,0. For economy of

presentation-hΨ*Ψ(I,F,φ,t) is reported, so that the stateI (J) density
appears on lower (upper) half.

HT ) Hsr + K∆ +VS (43)
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the adiabatic potential for a wave packet originating on surface
J, the upper surface.

For t e 2 the packet maintains its shape, in the radial
direction. This limited change in the wave packet’s shape reflects
the absence of a reflected wave. Byt ) 4 fs a scattered wave
(from the inner wall) exists on surfaceJ and (coherent)
oscillations are observed on that potential energy surface. As
time progresses, the portion of the wave packet on potential
energy surfaceJ becomes concentrated near the conical
intersection. Significantly, no oscillations are observed on
surfaceI (for t < 12 fs). This reflects the absence of a reflected
wave. In other words, the portion of the wave packet in stateI
escapes directly from that region. The minor oscillations fort
) 12 fs are most likely the result of small reflection effects,
produced here by the hard wall at the right-hand boundary.

Thus, the lower cone is fully efficient in propagating the wave
packet away from the conical intersection. It might be thought
that the singularity in the derivative coupling at the conical
intersection would lead to a fully efficient transfer of the wave
packet from surfaceJ to surfaceI. The existence of a reflected
wave on surfaceJ shows that this is not the case.

Recently, there has been considerable interest in the effect
of not including the geometric phase inHT.9,16,120, 121The present
results offer some interesting insights in this regard. Omission
of the geometric phase amounts to takingl ) 1/2 + l′ while m
remains an integer. This is not a gauge transformation, and
identical results cannot be expected. However, differences
evident in practical examples maybe small. This need not be
the case. From eq A7b it is seen that if the geometric phase
had been omitted as described above and the gaugel ) -1
were used, this wave packet would not decay at all!

D. Upward Transitions: The Importance of Tilt. By
symmetry Ψ*Ψ(K,F,π/2,t) ) Ψ*Ψ(K,F,3π/2,t). Figure 10
reportsΨ*Ψ(K,F,φ,t) for the LtU transition through the tilted
symmetric cone defined above. Onlyφ ) 0, π/2 (π/2,π) are
reported for stateI (J), reflecting wave packet propagation to
largerF for φ ) π on surfaceI and the negligible contributions
for φ ) 0 on surfaceJ.

From Figure 10 a clear preference forφ ) π is evident for
the wave packet emerging in stateJ. Note that as the wave
packet approaches the conical intersection on surfaceI, reflected
wave induced oscillations are evident. Such oscillations occur
to a much smaller extent on surfaceJ, indicating largely
unfettered escape, forφ ) π.

There are several factors that can affect the behavior of the
wave packet near a conical intersection for tilted symmetric type
double cones. Sincem is no longer a good quantum number,
the wave packet swirls down the upper cone and also swirls as
its exits on the lower cone. For the tilted cone the preferred
orientations are the same in the upper and lower cones, whereas
for an asymmetric vertical cone they are complementary; that
is, minima on the upper cone are the maxima on the lower cone.
Compare Figure 5b,c.

The origin of the LtU transition for the tilted symmetric cone
is seen from Figure 5c to be the favorable energetics alongφ

) 0 onEI
0,a. See solid arrow in Figure 5c. For this direction of

approach, the wave packet emerges on the upper surface near
φ ) π, which is the preferred direction for egress on the upper
surface. Consistent with this observationΨ*Ψ(J,F,φ,t) finds its
primary support forφ nearπ. Swirling on the lower surface
from φ ) 0 towardφ ) π/2, 3π/2 (Figure 10,t ) 9 fs) leads
to transitions onto the upper surface that continue to swirl toward
φ ) π. Compare thet ) 14 and 16 fs results in stateI for φ )
π/2, π.

V. Unanswered Questions

A. Intersecting Seams.Conical intersections are intersections
of potential energy surfaces. It had been shown that in some
triatomic molecules,122-125 all of which had C2V or higher
symmetry, an intersection or confluence of a symmetry-allowed
seam of conical intersection and a seam of conical intersection
of two states of the same-symmetry (a same-symmetry seam)
exists.59 These intersections of intersections could be anticipated
using the cross product of the two vectors that define theg-h
plane.126,127Very recently we uncovered an interesting extension
of this occurrence.128,129As noted previously in the tetra-atomic
molecule HNCO, the ground1A′ state and excited1A′′ state
are connected by a symmetry-allowed seam of conical intersec-
tion for planarCs geometries. For nonplanar geometries a seam
of conical intersection of two states of the same symmetry also
exists. These represent distinct branches of a common seam.
What is surprising is that these seams intersect forCs geometries.
At these intersectionsh ) ||hIJ|| vanishes. It can be shown that
at the confluence the two seams have a commongIJ direction.128

However,hIJ of one seam corresponds to a seam direction of
the other seam. Thus, the minimal description of this confluence
involves three internal coordinates, only one of which makes a
linear contribution to the energy difference at the confluence.
It will be important to establish the prevalence of this feature
and determine whether it has a clear dynamical signature.

B. Role of Conical Intersections in Nonadiabatic Processes
Involving LtU Transitions. The O(3P) + H2O f OH + OH
reaction is a nonadiabatic process involving, at least formally,
two or more changes of electronic state. The near linear conical
intersection in Figure 4 guided our demonstration135 of barri-
erless collinear paths connecting reactants and products. In
addition, the collinear paths, by enforcing3Π and3∆ degenera-
cies can reduce the number of nonadiabatic transitions required
to reach the products. The wave packet studies of section IV
show that sufficiently tilted cones can provide favorable
pathways for LtU transitions. The importance of conical

Figure 10. hΨ*Ψ(L,F,φ,t) LtU transition.g ) h ) 1/x2sx ) 0.9, sy

) 0. For economy of presentation,φ ) 0 is reported in the upper right
quadrant,φ ) π/2 (lower half of figure)-hΨ*Ψ(I,F,φ,t) is reported;
and forφ ) π (upper left quadrant)-F is used on the abscissa.
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intersections in UtL transitions is well established. However,
this is not the case for LtU transitions, which are much less
well studied in polyatomic molecules. It will be important to
assess the extent to which the pathways offered by conical
intersections are actually involved in this class of nonadiabatic
processes.

VI. The Future

The study of electronically nonadiabatic processes goes back
approximately 70 years to the pioneering work of Rice130,131

and of London.132 According to the golden rule130,131nonadia-
batic transitions are driven by a product of the density of states
and a coupling matrix element. The size of the matrix element
is expected to increase if an avoided intersection is replaced by
a conical intersection. Thus, the recent realization that conical
intersections of states of the same symmetry are not rare
occurrences necessitates a reevaluation of the importance of
these two contributions to the decay mechanism. This will
require both experimental and theoretical work on small systems
in the gas phase where increasingly accurate models can be
introduced and validated. Transfer of this expertise to the liquid
phase and to larger (biologically relevant) systems, where
nonadiabatic processes, have long been known and studied, has
already begun and its continuation is essential. For adiabatic
processes advanced tools for handling solvent effects are
currently available,133 as are techniques for handling larger
systems by combining quantum mechanics and molecular
mechanics.134 The use of these techniques to address problems
in nonadiabatic chemistry has already begun and can be expected
to continue to grow in future.

Finally, we note that field of nonadiabatic dynamics has seen
enormous growth with the advent of (efficient) algorithms for
locating conical intersections in nonrelativistic Hamiltonians.
These algorithms treat conical intersections of states of the same
spin multiplicity but are otherwise quite general. (Algorithms
for locating intersections of noninteracting states are not at issue
here.) Very recently, an algorithm to locate conical intersections
for Hamiltonians that include relativistic, spin-orbit, effects has
been reported.100 Such algorithms can be expected to bring
similar insights to nonadiabatic processes for which relativistic
effects are important.

In summary, nonadiabatic chemistry is a field with a long
history and much work that remains to be done.

Appendix

The goal of this Appendix is to show how the deviations
from a Jahn-Teller symmetric potential that occur for same-
symmetry conical intersections are reflected in the Hamiltonian.

The wave packetΨT is expanded in adiabatic electronic state
basis

The total Hamiltonian is given by88

whereq(φ)2 ) (g2 cos2 φ + h2 sin2 φ)

wherekIJ ) 〈pΨI
a|‚pΨJ

a〉. In the symmetry-required caseq(φ)
) 1, that isg ) h. This can be formally achieved for this general
case by the change of variablesx′ ) xg, y′ ) yh. However,
now the kinetic energy must be modified with1/2p‚p replaced
by 1/4δgh

2(p′‚p′ + ∆ghp′op′) where AoB ) AxBx - AyBy. HT

can be rewritten (dropping the primes), as

where

where T-, eq A5b, is obtained fromT+ by replacing ‚
everywhere byo. Equation 4 is a principal result of this
Appendix.

To take advantage of the fact that only theφ-component of
the derivative coupling is singular, it is convenient to re-express
eq 4 in polar coordinates. To this end, we replace

and observe thatAI ) (l + 1/2)φ, for l an integer; the singular
component of the first derivaitve couplingF-1f φ

IJ ) 1/(2F), and
〈pΨK

a|‚pΨL
a〉 ) F-2kφ

KL ) δKLF-2f φ
IJ 2, 〈pΨK

a|opΨL
a〉 ) k-

KL )
δKLf φ

IJF-2 cos 2φ. Equation 5a becomes

eq A5b becomes

T+,KK(x,y) ) p‚p + (p‚∇AK) + 2∇AK‚p + ∇AK‚∇AK + kKK

(A3a)

T+,KL(x,y) ) (p + ∇AK)‚(-i) fhK, L + (-i) fhL,K‚(p + ∇AL)
(A3b)

HT(x,y) ) Hsr(x,y) + K∆(x,y) + S(x,y) (A4)

Hsr,KL(x,y) ) (2M)-1T+,KK(x,y)δK,L -

Fdghσz
KL+(2M)-1T+,KL(x,y)σy,KL

≡ H0,KK(x,y) + T+,KL(x,y) (A5a)

K∆,KL(x,y) ) T-,KK(x,y)δK,L + T-,KL(x,y)σx,KL (A5b)

SKL(x,y) ) S(x,y)δK,L (A5c)

øR
a,I f øImν(F,φ) ) eimφ/x(2π)F-1/2êmν

I (F) (A6)

Tnν,mµ
+,KK ) δmn〈êmν

K |- ∂
2

∂F2
+

(l + m + 1/2)
2

F2 |êmµ
K 〉 (A7a)

Tnν,mµ
+,IJ ) -iδm,n〈êmν

I |((m + l + 1/2)

F2 )êmµ
J 〉 (A7b)

Knν,mµ
∆,KK ) 〈ênν

K |(δn,m+2

2 [∂†

∂F
∂

∂F
-

(m + l + 2)2- 5/4

F2
+

2(m + l + 3/2)

F
∂

∂F] +

δn,m-2

2 [∂†

∂F
∂

∂F
-

(m + l - 1)2 - 5/4

F2
-

2(m + l - 1/2)

F
∂

∂F])|êmµ
K 〉 (A8a)

Ψa,T(r ,x,y,t) ) ∑
R,K)I,J

Ψ̃K
a(r ;x,y) øR

a,K(x,y) wR
a,K(t) (A1)

HT(x,y) ) (2µ)-1[[T+,II(x,y) k+
IJ(x,y)

k+
IJ(x,y) T+,JJ(x,y) ] +

T+,IJ(x,y)σy] + S(x,y)I - Fdghq(φ)σz (A2)
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and eq A5c becomes
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